Google App Engine
Java Experiments

Version 1.0

Romin K. lrani

Google App Engine Java Experiments
Copyright © March 2010 by Romin K. Irani

All rights reserved. No part of this work may be reproduced or transmitted in any
form or by any means, electronic or mechanical, including photocopying, recording
or by any information storage or retrieval system without written permission of the
author. Commercial use of this work is not permitted.

Java and all Java-based marks are trademarks or registered trademarks of Sun
Microsystems, Inc. Google and all Google-based marks are trademarks or registered
trademarks of Google.

Author: Romin K. Irani

Editorial Board: Romin K. Irani, Jérbme Baton

Web Marketing : Aurélien Bernard (http://www.ab-comm.fr/)
Compositor: Devyani R. Irani

For any information/feedback regarding this publication, please contact the author
directly at romin.K.irani@gmail.com.

The source code for this book is available to readers at:
http://gaejexperiments.wordpress.com. If you like this book and would like to
donate, please do via the Donate button on the above site. 100% of all donations
will be sent to KIVA (www.kiva.org) charity of my choice.

http://www.ab-comm.fr/
mailto:romin.k.irani@gmail.com
http://gaejexperiments.wordpress.com/
http://www.kiva.org/

About the Author

Romin K. Irani is a software developer with 15 years of industry
experience, living in Mumbai, India. He is the author of the blog:
http://gaejexperiments.wordpress.com.

He truly believes that software has the power to change lives. And
it is that pursuit that keeps him passionate about his work.

He loves learning and writing about technology. Give him an API,
he will conduct an experiment with it and release the results to
the world.

He has contributed to several books at Wrox Publications, as
writer and reviewer. He has also authored several key
programming articles at various websites. The list of his
articles/books is listed at http://iromin.wordpress.com/articles
and http://iromin.wordpress.com/books.

His social application, Save a Life
(http://iromin.wordpress.com/save-a-life) won the category
award at the Ribbit Killer App Challenge in March 2009.

He is on the lookout for assignments that you may have. He
would love to hear from you, if you are interested in consulting &
training on various technical areas. Please reach him at
romin.k.irani@gmail.com

You can follow him on Twitter: http://www.twitter.com/iromin

http://gaejexperiments.wordpress.com/
http://iromin.wordpress.com/articles
http://iromin.wordpress.com/books
http://iromin.wordpress.com/save-a-life
http://www.twitter.com/iromin

About Mumbai Health Tracker

I recently built a social portal called Mumbai Health Tracker.

I am pleased to let you know that a lot of material covered in this book was used to
create this application and there is no reason why you should not be able to create
a similar application using the material presented in this book.

http:Z//mumbaihealth.appspot.com

Mumbai Health Tracker is a social web service that aggregates health issues
reported by its residents.

These health issues are then categorized, aggregated to provide information that
will be useful to Individuals, Government & Doctors.

All the above individuals/organizations can understand the typical health trends
over a period of time. Some examples include:

e Which diseases are more prevalent in certain areas?
e Which months of the year see a spike in certain diseases?
e Co-relate certain health issues to civic infrastructure issues

The long term vision of this service is to do controlled pilots in small areas where
individuals and medical practitioners provide data that may help to identify trends
and address local issues.

A desktop version of the Health Tracker is also available. If you find this interesting
or wish to adapt this application to your region, please contact me at
romin.K.irani@gmail.com

http://mumbaihealth.appspot.com/
mailto:romin.k.irani@gmail.com

Acknowledgements

We all stand on the shoulders of giants. And my case has been no different. In no
particular order, |1 wish to thank the following:

o All the organizations that believe and promote open standards. By giving us
their tools and environments to build on, it has created a win-win for all of us.
“Nothing Else Matters...” sang Metallica and that is really true.

e To the team behind Google App Engine. This material would not exist without
you.

e All individuals, who in the spirit of sharing, have penned great blogs/articles
from which | have learned a lot.

e To my wife, Devyani, who managed the production of this eBook along with
her patience and understanding, while | conducted these experiments.

e To a dear friend, Jérbme Baton (aka Wadael — http://www.wadael.org), who
lives in France, but has almost become a virtual next-to-my-cubicle co-
worker. We have shared a lot of technical notes over the last few months and
learnt much from each other. The world is indeed flat.

e To Aurélien Bernard (http://www.ab-comm.fr/) for his inputs on web
marketing.

e To all the readers of http://gaejexperiments.wordpress.com. You folks have
kept me motivated all along.

e To my parents. Dad & Mom — thank you for believing in me, encouraging and
letting me pursue my interests.

http://www.wadael.org/
http://www.ab-comm.fr/
http://gaejexperiments.wordpress.com/

Table of contents

Episode 1
Episode 2
Episode 2.1
Episode 3
Episode 4
Episode 5
Episode 6
Episode 7
Episode 8
Episode 9
Episode 10
Episode 11
Episode 12
Episode 13
Episode 14
Episode 15

Episode 16

Google App Engine Java Development Setup

GAE]J + XMPP and rolling your own Agent

Communicating to another XMPP Account via your Bot

Using the GAE] Email Service

Building a Dictionary App : Using the GAE] URL Fetch Service
Upgrading to Google App Engine 1.2.6

Handling incoming Email in your application

Writing your First Google Wave Robot

Using Memcache in your GAE] applications

Using the Cron Service to run scheduled tasks

Using the Task Queue Service

Develop Simple Wave Robots with WadRobotFramework
Writing an Advanced Wave Robot with WadRobotFramework
Using the Blobstore Java API

Writing a Chrome Extension powered by App Engine

Using a CAPTCHA in your Google App Engine Application

Using the Datastore API

14

24

28

34

45

53

61

86

97

104

115

139

156

171

187

199

Episode 1 : Google App Engine Java Development Setup 1

Episode 1 : Google App Engine Java
Development Setup

This blog post will be focused on getting your developer environment right for
developing/deploying your Google App Engine for Java (GAEJ from now) application in
your IDE. The version of Google App Engine that | shall be covering is 1.2.5 (Released
on 09/03/09)- the very latest (at least at the time of this writing).

Before we begin, let me make a few assumptions:

e You are a Java developer who is familiar with developing basic Java Web
applications. At most you need to know Servlets/JSP and the typical WAR file
structure. Nothing more!

e You are comfortable with installing the JDK, Eclipse IDE and downloading /
setting up plugins for Eclipse.

There are numerous resources on the web that address the book in addition to books, so
please feel free to look them up before you proceed. As much as | would like to cover all
details, I think I will need to keep this blog focused more on Google App Engine stuff for
Java. So let’s get going...

Sign up for Google App Engine

You need to first sign up for the Google App Engine Account. This is easy and is a
breeze in case you already have a Google Account (Gmail, Apps, etc) in which case it is
best that you use that straight away. Go to http://appengine.google.com and simply login
with your account. Even if you do not have an account, you can sign up for a Google
Account, a link for which is provided on the page.

Whether you already have a Google Account or have signed up for a new one, do login
first. Once you are logged in, you will be presented with a list of applications that you are
currently running on the Google App Engine under the account which we logged in with.
Google provides a total of 10 applications that you can deploy under a single account.
Please be aware that as of this date, there is no way to delete an application and use that
slot for another application — so use with care.

http://appengine.google.com/

Episode 1 : Google App Engine Java Development Setup 2

Here is a screen shot of my account page at the Google App Engine after login:

&o |!-__EJ'I_ app engine remin_k.irankdgmail.com | My Account | Halp | San o

My Applications

Applicatian Current Varsion
kogdbyank g stor 1
cirsrzbullzair Hene Deployed
ganjunppiaigrial Mona Dieployed
myinfgsgent Hoeve Deployed

Croate an Application
foir have B apphcalions ramarmg

B 2008 Googe | Toarm of Sanece | Prvacy Pobcy | Biog | Discussnn Forme

It shows that | have 4 applications registered on Google App Engine and have 6 more to
go. You might have no applications listed if you are logging in for the first time and/or
have not created any application.

Note: If you are registering your 1st application, the process is as follows:

1. Click on Create an Application.

2. Once you have selected a name, then you will be prompted for your Mobile Number.
Enter your mobile number (with country code, etc).

3. Google will send you a SMS with an code. You will be prompted on the next screen to
enter the code that you received on SMS. Enter that to confirm the process.

This is only required for registering your 1st application and once the SMS

verification process is complete, you will not be prompted again when you create
your 2nd application and so on.

Registering your Application

Cool, let’s create an application then but before that we must tell your application to
show its ID. So let us talk about Identity first.

Identity, Identity, Identity....

Yes, everyone needs to show an ID. And the same applies to your application too that is
hosted in the cloud.

Let me explain that a little. As you know Google App Engine is a PaaS (Platform as a
Service), which means that you can develop and deploy your application (following some

http://gaejexperiments.files.wordpress.com/2009/09/post1-1.jpg

Episode 1 : Google App Engine Java Development Setup 3

specification) into their infrastructure (in the cloud). Now what this means is that while it
would be nice for you to get an application name of your choice, it is not feasible in a
hosted environment where you are sharing all resources with other applications too.

By default, your application needs to be unique within this so called name space:
YOUR_APPLICATION_ID.appspot.com

where YOUR_APPLICATION_ID can be any name that you wish for your application,
that has not already been taken by someone else. So before you start with an application
in mind, it pays to plan it out a little first and that includes what name you would like for
your application and then registering it as quickly as possible so that you have it.

Note: Please keep in mind that what | am discussing here is the basic facilities provided
by Google. It is perfectly possible for you to purchase a domain name and then point it to
the URL where your application is hosted in the Google App Engine cloud. But we will
not discuss all that know and will keep the discussion to what is provided straight of the
bat.

OK. So you have thought of the application name and wish to register it. So since we are
going to write a “Hello World” sort of an application — we should go ahead and create
an application identifier first.

Let us actually do that before moving on. Assuming that you are logged in as described
earlier, click on the Create An Application button. This will bring up a page as shown
below:

{:.UI I-"'||L' BpP anEine todmin ki and@gimall.com | My Account | Help | Sign o
., E

Create an Application

Application ldantifiar:

appspot com | Chack Avsdabiity

d (X IR

Application Tike:

fmthantication Options (Advancadp; Lesm mora

Fpan to all Google Accenns usors (defanli

o] cama|

€ 2008 Google | Tarms of Sensca | Privacy Policy | Biog | Discussion Fomms

This page will allow you to select an Application Identifier that we have been talking
about. Go ahead. Try out a few names like myhelloworld, myfirstapp, etc and see which
one is available. Give any string for the Application Title and go with the default options

http://gaejexperiments.files.wordpress.com/2009/09/post1-2.jpg

Episode 1 : Google App Engine Java Development Setup 4

for the Account options (we can skip it for now). Click on the Save button. If all is well,
the application identifier will be created and your first application is registered.
Congratulations! But we have a lot to do including writing the application.

Please make sure that you note down your Application Identifier since this will be used
later on to verify your entire setup. OK, let me not scare you — you can always go back
to the Google AppEngine account and see the applications listed &

Do check out the excellent monitoring portal that Google App Engine provides to
view/monitor a number of things about your application. Just click on the registered
application in the application list and you will be lead to the portal where you can check
the logs/quotas and configure several other stuff. As this blog develops, | will cover more
of this but for now, just browse around and familiarize yourself.

Downloading, Installing and setting up the Eclipse IDE
for GAEJ

We will need the following software to be present on your development machine. | am
assuming that you are comfortable with downloading and setting up of the software from
public sites.

1. Java Development Kit 1.6.x : Please ensure that the JDK version is setup
appropriately on your machine.

2. Eclipse 3.3/3.4/3.5: Choose any Eclipse IDE version that you want. | am using
the latest version 3.5 Galileo Release.

3. GAEJ Plug-in: Go to the following page:
http://code.google.com/eclipse/docs/getting_started.html This page contains links
to the GAEJ plugin for Eclipse download/installation. I list below the update site
URL for the GAEJ Eclipse plugin from that page:

o Eclipse 3.5 (Galileo)
http://dl.google.com/eclipse/plugin/3.5

o Eclipse 3.4 (Ganymede)
http://dl.google.com/eclipse/plugin/3.4

o Eclipse 3.3 (Europa)
http://dl.google.com/eclipse/plugin/3.3

Depending on the version of Eclipse that you have, | reproduce from the Google
site the links for installing the plugin depending on the version of Eclipse that you
have. Please follow the instructions on the page, it is straightforward and | do not
wish to replicate it here.

o http://code.google.com/eclipse/docs/install-eclipse-3.5.html
o http://code.google.com/eclipse/docs/install-eclipse-3.4.html
o http://code.google.com/eclipse/docs/install-eclipse-3.3.html

http://dl.google.com/eclipse/plugin/3.5
http://dl.google.com/eclipse/plugin/3.4
http://dl.google.com/eclipse/plugin/3.3
http://code.google.com/eclipse/docs/install-eclipse-3.5.html
http://code.google.com/eclipse/docs/install-eclipse-3.4.html
http://code.google.com/eclipse/docs/install-eclipse-3.3.html

Episode 1 : Google App Engine Java Development Setup 5

Once you have finished the setup and restarted your Eclipse IDE, you should see the
following 3 icons in the toolbar of the Eclipse IDE.

& W L |

If not, please refer to the troubleshooting options that are described in each of the above
links.

Writing our first GAEJ application

So far we have signed up for Google App Engine, registered our Application Id and setup
the GAEJ plug-in for Eclipse. We are ready to write our application now. The Gods
always tell us to start any new thing on an auspicious note by crying out “Hello World”
and we shall stick to the tradition.

As we shall see things unfold, GAEJ plug-in for Eclipse makes things very simple. It
does all the hard work after we give it some inputs and then it generates an entire web
application for us along with sample servlet that pretty much does just that i.e. says
“Hello World”. What we will be writing no code, you say? Yes. All this code is
generated for us and is pretty much a template that we can take and put our application
logic in there.

So let us move forward and generate our first project now (steps along with explanation
follow):

1. Launch your Eclipse (if not started).

2. Either click on File —=> New —> Other or press Ctrl-N to create a new project. Select
Google and then Web Application project. Alternately, you could also click on the New
Web Application Project Icon [part of GAEJ Eclipse Plugin] in the Toolbar:

3. This will bring up a New Web Application Project page as shown below:

http://gaejexperiments.files.wordpress.com/2009/09/post1-3.jpg

Episode 1 : Google App Engine Java Development Setup 6

Linew web Application Project
Create a Web Application Project

Create a'web Application project in the warkzpace ar in an external
lozation

MyFirstGAEIProject
com.gaej. firstproject

(o [

Enter the details as given below:

* Project Name : MyFirstGAEJProject. You can select any name that you like.
* Package : com.gaej.firstproject. You can select any name that you like.
* Deselect the Use Google Web Toolkit option.

4. Click on Finish. This will generate an entire project for you which is ready to be
deployed.

5. But before that, let us look at the files that have been generated. | reproduce for you the
screen from my Package Explorer as shown below:

http://gaejexperiments.files.wordpress.com/2009/09/post1-4.jpg

Episode 1 : Google App Engine Java Development Setup 7

e Package Explorer &3 \\X‘Eg Hierarn:h_l,l'! TE

=l =5 MyFirstGAE JProject
- s
¢ -} com.gaeifirstproject
L w MyFirstGAEJProjectServlet. java
B-E= METAINF
i_E] logdj. properties
#-E4 &pp Engine SDK [4pp Engine - 1.2.5]
B JRE System Library [re1 6.0 _0F]
L= wear
= WEB-IMF

|

! ﬂ appengine-api-1.0-2dk-1.2.5.jar
| 4] appengine-api-labs-1.2.5 jar
|ﬂ datanucleus-appengine-1.0.2 jar
; |ﬂ datanucleus-core-1.1.5 jar
| af datanucleus-jpa-1.1.5.ar
M geronim-jpa_3.0_spec-1.1.1.jar
i {ﬁ geronimo-ita_1.1_zpec-1.1.7 jar
- ool al] do2-api-2 3eb.jar
M appengine-web.xml
-5 logging properties
; K] weeb.sml
2] indes. html

6. If you are familiar with Java Web applications, this should be straightforward stuff
with directories like WEB-INF, WEB-INF\classes, WEB-INF\lib, etc. But let us cover it
in brief:

e src: This contains the source files. You will find that it has generated a sample
file name MyFirstGAEJProjectSerlvet.java for you. It has been created as per
the package hierarchy that you selected. You can keep all your source files over
here as you develop more.

e war : This is the war file structure i.e. Web Application Archive. This if you
recollect will be deployed into the Servlet Container of the App Engine that will
eventually host your Java Web Application. In this directory, you have the
following:

o WEB-INF\lib: All appropriate JAR files that provide the Java SDK
libraries along with Google Java APIs for the App Engine have been
linked correctly into the project build path and the necessary JAR files
are also present in the WEB-INF\lib folder

o index.html : This is the first page served. You can actually customize it to
any that you want. All your additional html files/resources could go in
here.

http://gaejexperiments.files.wordpress.com/2009/09/post1-5.jpg

Episode 1 : Google App Engine Java Development Setup 8

o logging.properties: If you are familiar with Java logging, you should be
able to make sense of this file and tweak your logging preferences over
here.

o web.xml : This is a standard web application configuration file. You will
find the Servlet entries present here for the sample servlet that is
generated for us.

o appengine-web.xml : This is a Google App Engine specific configuration
file. And the main element here of interest to us is the application element
that will contain the Application ID of the application that we registered
for Google and which will be pointing to a hosted version of this WAR.
We will set this up at the time of deploying the application, which we will
cover later.

7. MyFirstGAEJProjectServlet : Let us cover this in brief, which can also act as a
refresher for writing and setting up a servlet configuration in case you are little rusty
(happens to the best of us!).

The servlet code is straightforward as shown below[Omitting package and import
declarations]:

public void doGet(HttpServletRequest req, HttpServletResponse resp)

throws 10Exception {

resp.setContentType('text/plain'™);
resp.getWriter().printin("'Hello, world™);

}
+

It extends the javax.servlet.http.HttpServlet class and implements the GET method.
You could parse out the request parameters if needed (in this case there are none of
interest). All that the servlet does is to get a handle to the response stream and then
mention its content type and send across the text Hello World to the client.

Now, we need to set the servlet url and its java class in the web.xml configuration file.
Open up the web.xml file and you will find the appropriate entries as shown below:

<servlet>

<servlet-name>MyFirstGAEJProject</servilet-name>

<servlet-

class>com.gaej .-firstproject.MyFirstGAEJProjectServlet</servlet-class>
</servilet>

<url-pattern>/myfirstgaejproject</url-pattern>

</servlet-mapping>

http://gaejexperiments.wordpress.com/2009/09/22/google-app-engine-java-development-setup/#viewSource

Episode 1 : Google App Engine Java Development Setup 9

And finally, if you open index.html, you will find a link that references the servlet as
shown below:

<td>MyFirstGAEJProject</td>

so that when the index.html page is served, you will see a Hyperlink named
MyFirstGAEJProject and on clicking it will invoke the MyFirsGAEProject servlet
implemented in com.gaej.firstproject. MyFirstGAEJProjectServlet which will then
print out Hello World.

Testing it locally

GAEJ Eclipse plug-in ships with a local server, where you can deploy your application
and test it out. Ensure that port 8080 is free on your machine and that no other web server
is running on it.

To test the application, all you need to do is the following:

1. Select the project and then Run As —> Web Application

U =5 1Java Applet AlbsShilted, &

Diebug As P D) 2Javadpplication AllShite
Y alhdate
Tasm b Run Configurations. ..

2. This will compile/deploy your application the local server and the server will be started
on port 8080. You will see the server starting in the console window as shown below:

[Poiomn| @ cemiooll. Destushon| @ Comoe 2t N WS w| bl DA =T O
| MyFrsIGAE SFaoject [weh Appication] C:\Progiam Fiesh avape] .0_0B\nhisvene eve [Sep 22, 2009 11:30.07 AM) =
IThe serwer is cunning &t herps:s /S localhoesc:S0S07 _:J
" o

3. If all is well, you will get the message that the server is running at http://localhost:8080
as shown above.

4. Once that notification is shown, launch your browser and navigate to the url :
http://localhost:8080. This will bring up a default JSP page that is generated for you with

http://gaejexperiments.files.wordpress.com/2009/09/post1-6.jpg
http://gaejexperiments.files.wordpress.com/2009/09/post1-7.jpg

Episode 1 : Google App Engine Java Development Setup 10

the servlet URL in it as shown below:

¥ Hello App Engine - Mozilla Firefox

File Edit “iew Higtory Bookmarks Tool: Help

J |j Hello App Engine | - | F

Hello App Engine!

Avallable Servlets:
MWyFirstGAEIProject

5. Click on the link and you will see your servlet getting invoked and telling you “Hello
World”.

E)Mogzilla Firefox

File Edt “iew History Bookmarks Tools Help

J |j http:/ flocalhost: B0_myfirstgaejproject | A | F

Hello, world

Now that things work, we need to deploy this application into the Google App Engine
infrastructure. So lets go to that.

Deploying it into the Cloud

To deploy the application in the cloud, simply click on the Deploy App Engine Project
Icon available in Toolbar[part of GAEJ Eclipse Plugin]. This will bring up a dialog
where you will need to provide your Google Account credentials (username and

http://gaejexperiments.files.wordpress.com/2009/09/post1-8.jpg
http://gaejexperiments.files.wordpress.com/2009/09/post1-9.jpg

Episode 1 : Google App Engine Java Development Setup

password). Do not click on Deploy yet.
T —
| 1.t Deploy Project to Google App Engine

Deploy

9 MyFirstGAEJProject does not have an application (D,
Click. the project zettingz link below o get it

[MyFirstGAE Project | Browse..

Click on the App Engine Project settings link in the above dialog. This will bring up a
properties page as shown where you need to entire the Application ID. Remember the
Application ID that we discussed earlier and you registered one for you. Well that is the
Application Id that you need enter over here. Enter that and click OK as shown below
[Remember to enter your Application 1D before clicking OK]:

h,pe fiker Bt
= Gacgle

11

http://gaejexperiments.files.wordpress.com/2009/09/post1-10.jpg
http://gaejexperiments.files.wordpress.com/2009/09/post1-11.jpg

Episode 1 : Google App Engine Java Development Setup 12

This will lead you back to the Deploy Project to Google App Engine dialog box. Now
simply click Deploy. This will connect to Google App Engine and deploy your
application and register it with the Application Id that you used. A snapshot of the
Progress dialog on my machine is shown below:

£} Deploying MyFirstGAEIProject to Google

& Claning 1 static files.
\E) :

nRERERENREED

[Always un in background

| Fun in Eackgruundl Cancel | Dietailz x> |

You will a lot of activity in your Console bar (a snapshot is shown) and at the end of it
you should see a message saying that the application is available.

| Probiems | 7 Javasoc .. Declasbon (2 Congele 22 VoA = B hainlle
MyF AR Froject - Deplay ta App Engine T
resting stajing directony ;l

Scanning for jEp Liles.
Scanning files on looml disk.
Initiating update.

Cloping 1 =tazic files=.
Cloning 14 applicacion files,
Uploading 5 filea.

Oploaded 1 filea,

Oploaded 2 £ile=s.

Oploaded 3 fil=s,

Uploaded 4 £filea,

[Uplonded 5 files.

|beploying new version.

IU:l.ll check again in 1 s=conds=

Clozing update: pew ver=ion 18 ready Lo SCLart serving.
Oploading ilndex definlcions.
Deployment completed successtully

L 0

You can deploy your application several times as you make changes. There is a certain
quota limit to how many times you can deploy it in a day and you can read that up but for
the moment, you can rest assured that the number is quite huge.

Congratulations! You now have your own application hosted on the Google App
Engine. It is already available to the world and that is what we will verify in the next
section.

Testing the hosted/online version of our application

http://gaejexperiments.files.wordpress.com/2009/09/post1-12.jpg
http://gaejexperiments.files.wordpress.com/2009/09/post1-13.jpg

Episode 1 : Google App Engine Java Development Setup 13

Your application is available under the url :
http://'YOUR_APPLICATION_ID.appspot.com. So if you Application ID is myapp,
the url is http://myapp.appspot.com. Go ahead and access your URL.

Technically it is even possible to have different versions running, but for the purposes of
this article we will limit it to the latest version that you deploy and which is available
under the url that I have mentioned above.

Next Steps

So we have ended our mini journey for now in which we did the following:

« Registered for Google App Engine

e Registered our first application

e Setup the Developer Environment for developing and deploying GAEJ Java
applications

e Used the Google Eclipse Plug-in to develop our first GAEJ application

e Tested and deployed our first GAEJ application

Thanks for joining in. I hope that this gives just about enough push to have your
environment all set up correctly along with the complete end to end experience.

The next episode will contain details on a great feature that has got recently added to
GAEJ and which is XMPP Support. | have used that to build the Mumbai Blood Bank
Locator Agent. Go give it a try! And stay tuned for the next episode that will cover in
detail on you can build your own Agent 007.

http://iromin.wordpress.com/2009/09/16/mumbai-blood-bank-locator-agent/
http://iromin.wordpress.com/2009/09/16/mumbai-blood-bank-locator-agent/

Episode 2 : GAEJ + XMPP and rolling your own Agent 14

Episode 2 : GAEJ + XMPP and rolling your own Agent

I hope all of you have got started with development of GAEJ applications using the nifty
Google Eclipse plugin. If not, I strongly recommend that you read it here. In this episode
I will be discussing one significant enhancement that Google has brought about to their
latest GAEJ release and that is XMPP support.

XMPP Protocol has for long been the backbone for a lot of systems till now and most
likely in the future. It stands for Extensible Messaging and Presence Protocol. Whew!
That was quite a complicated expansion if you ask me. But fear not. It emerged from the
Jabber protocol and is in use today in a lot of Instant Messaging Systems. Google Talk is
a prime example of an application that utilizes XMPP as its backbone. Several other IM
clients utilize XMPP too. Several XMPP APIs in a variety of languages are available too
for you to hack your XMPP client any time.

Agent in Action

What are we going to build today, you ask? We are going to a build a XMPP Agent that
we can add in IM clients like Google and talk to it. We are going to cover here all that is
needed for you as a Java developer to use GAEJ and get a basic XMPP Agent application
working.

To see it in action, | suggest you do the following:
1. Start Google Talk on your machine.
2. Add gaejxmpptutorial@appspot.com as a friend. If it asks you to add itself as a
friend, please do so.
3. Send it any message you like. For e.g. Hello.
4. It will reply back with whatever you typed.

Here is a running sample screenshot of what we will be achieving today:

@ paepanpptitariakivappspot.com =1 I

‘e Seml voicemail Call Sedul Files <1 BEmail v

ﬂ Romin; Hello

gaejxmpptutonial; You sent me : Hello
ﬂ Romin; Did | really send you Hello?
gasjxmpptrtonial; You sent me - Did | really send you Hello?

http://gaejexperiments.files.wordpress.com/2009/09/post2-5.jpg
http://gaejexperiments.wordpress.com/2009/09/22/google-app-engine-java-development-setup/
http://gaejexperiments.wordpress.com/2009/09/22/google-app-engine-java-development-setup/
http://code.google.com/appengine/docs/java/xmpp/overview.html

Episode 2 : GAEJ + XMPP and rolling your own Agent 15

We will cover how to write the same XMPP Agent (gaejxmpptutorial) using GAEJ. Once
you get the mechanics in place, the world is your oyster when it comes to writing Agents
that do what you want it to do. All you need to then write is your Agent logic and GAEJ
platform does the rest for you.

First things first

Here are a few things that | shall assume:

1. You have an appropriate Eclipse setup along with the GAEJ for Eclipse plugin
configured correctly

2. You have a Google Account and know what it means to register an application
under your account

If you are unclear, | suggest to read up my first episode.

Our “Hello World” XMPP Agent

At a high level, we will be creating a XMPP Agent that will do the following:

e The Agent will be hosted in the GAEJ system. The application name will be any
application id that you select for your account (More on that while deploying).

e This Agent can be added as your friend/buddy in Google Talk or any XMPP IM
client

e You can type out a message to the Agent and it will simply send back the message
that you typed.

Alright, let’s go.

Create a New Project

The first thing to do is to create a New Google Web Application Project. Follow these
steps:

1. Either click on File —=> New —> Other or press Ctrl-N to create a new project.
Select Google and then Web Application project. Alternately you could also
click on the New Web Application Project Toolbar icon as part of the Google
Eclipse plugin.

2. Inthe New Web Application Project dialog, deselect the Use Google Web
Toolkit and give a name to your project. | have named mine
GAEJXMPPTutorial. | suggest you go with the same name so that things are
consistent with the rest of the article, but I leave that to you.

3. Click on Finish

http://gaejexperiments.wordpress.com/2009/09/22/google-app-engine-java-development-setup/

Episode 2 : GAEJ + XMPP and rolling your own Agent 16

This will generate the Google Web Application Project, which consists of a sample
Servlet that prints out “Hello, World”.

Understand the GAEJ XMPP API

Before we write our Agent, we need to understand first the Google XMPP API. I will
cover it in brief over here and the rest of the details you can understand from the link
provided, once you need to dig deeper. Make no mistake, the API is detailed and you will
need to refer to the finer points as the scope of your XMPP interaction increases but for
our starter version, we do not need to know too much.

Think for a moment that you are the Agent that people are going to add to your Google
Talk IM client. What do you need to do at a basic level. It all boils down to this:

1. Receiving a message

2. Interpreting it and composing an appropriate response message (This is where
your Application logic will come in).

3. Sending a message.

Let us look at each of the 3 areas now and what the API looks like. Please note that all
XMPP API classes are present in com.google.appengine.api.xmpp.* packages.

Receiving a message

Since XMPP support is now part of the GAEJ infrastructure, all GAEJ applications are
capable of receiving an incoming XMPP Message. So once your application is hosted in
the GAEJ cloud, the application can receive messages from other XMPP clients like
Google Talk. To enable this receiving of XMPP messages from a code level, you need to
do two things:

- Enable your application to receive XMPP messages by configuring the XMPP
Service in your application. This is straightforward and all you need to do is add the
following element to the appengine-web.xml file. The appengine-web.xml file as you
know is specific to the Google Java Web Application project and is used for configuring
certain services, XMPP being one of them. It is found in the war\WEB-INF folder of
your Web Application Project. The XML fragment to add at the end but before the
</appengine-web-app> element.

<inbound-services>
<service>xmpp_message</service>
</inbound-services>

We will cover this in detail again later, but this is sufficient for the moment.

- Configure and code a Java Servlet that will receive the incoming Message. All
XMPP messages to your application are delivered via POST to following URL path in

http://code.google.com/appengine/docs/java/xmpp/overview.html

Episode 2 : GAEJ + XMPP and rolling your own Agent 17

your application: /_ah/xmpp/message/chat/. So you will need to configure the servlet
like the following snippet in the web.xml file, present in the war\WEB-INF folder of
your Web Application Project.

<servlet>

<servlet-name>xmppreceiver</servlet-name>

<servlet-

class>com.gaejexperiments.xmpptutorial .XMPPAgentServilet</servilet-class>
</servlet>

<servlet-mapping>
<servlet-name>xmppreceiver</servlet-name>
<url-pattern>/_ah/xmpp/message/chat/</url-pattern>
</servlet-mapping>

In the above snippet, you will find the fixed URL path /_ah/xmpp/message/chat/
configured as the <url-pattern/>. And then | have a Java Servlet class
com.gaejexperiments.xmpptutorial. XMPPAgentServlet as the <servlet-class>.

Now, all we have to do is write our Servlet. As mentioned, the incoming XMPP Message
will be POSTed to our Servlet, so we need a simple doPost(...) implemented in our
Servlet. The skeleton is shown below:

package com.gaejexperiments.xmpptutorial;

import com.google.appengine.api.xmpp.*;

//0ther imports

public class XMPPAgentServlet extends HttpServilet {

public void doPost(HttpServletRequest req, HttpServletResponse resp)
throws 10Exception
{
//get the iIncoming message from the Request object i.e. req
// interpret it and compose a response
//send the response message back
}
3}

Interpreting the incoming message and composing a response

To interpret the incoming message, we need to extract out the message that has been
passed to us in the HTTP Request. It is done in the following manner:

XMPPService xmpp = XMPPServiceFactory.getXMPPService();
Message msg = xmpp-.parseMessage(req);

The msg object will contain the XMPP Message. There are several elements in the
XMPP message that are of interest to us and chief among them being who has sent the
message and what is the text of the message that has been sent to us. This is extracted out
by the getter methods available on the Message class as shown below:

Episode 2 : GAEJ + XMPP and rolling your own Agent 18

JID fromJid
String body

msg.getFromJid();
msg.getBody();

The JID class represents the Jabber 1D of the sender whereas the body will contain text of
the message sent to us.

Once you have the message, you can interpret it and then create a XMPP message that
you need to send back i.e. respond with. To compose an XMPP Message, here is the API:

Message replyMessage = new MessageBuilder()
-withRecipientJids(""JABBER_ID_OF RECIPIENT"™)
-withBody(""TEXT_TO_SEND_TO_RECIPIENT™)
buildQ;

The above method is straightforward and we will see it more in the next section.
Sending a message
Finally, we have our message and all we need to do is send it. To do that, here is the API.

We first check if the recipient is available i.e. Online and then send the message using the
sendMessage method.

XMPPService xmpp = XMPPServiceFactory.getXMPPService();

//Compose the Message Object i.e. replyMessage

if (xmpp.getPresence(""JABBER ID OF RECIPIENT™).isAvailable()) {
SendResponse status = xmpp-sendMessage(replyMessage);

//Take appropriate action based on status SUCCESS or FAIL i.e. log an
error, update database, etc

3

Write our Servlet and configure it

Create a new Java Servlet class named XMPPAgentServlet in the package
com.gaejexperiments.xmpptutorial. You can use your own namespace and Java class
name if you wish. The entire source code for the Agent is shown below:

package com.gaejexperiments.xmpptutorial;

import java.io.lOException;
import javax.servlet.http.HttpServilet;

import javax.servlet_http.HttpServletRequest;
import javax.servlet_http.HttpServletResponse;
import com.google.appengine.api.-xmpp.*;

import java.util.logging.Level;

import java.util.logging.Logger;

@SuppressWarnings(*'serial'™)

//STEP 1

Episode 2 : GAEJ + XMPP and rolling your own Agent 19

public class XMPPAgentServlet extends HttpServilet {

public static final Logger log =

Logger .getLogger (XMPPAgentServilet.class.getName());

public void doPost(HttpServletRequest req, HttpServletResponse resp)
throws 10Exception

{

try {

String strStatus = "'';
XMPPService xmpp = XMPPServiceFactory.getXMPPService();
//STEP 2

Message msg = xmpp-parseMessage(req);

JID fromJid = msg.getFromJid();

String body = msg.getBody();

_log.info("'Received a message from " + fromJid + " and body = "™ +
body) ;

//STEP 3

String msgBody = *"You sent me : ' + body;

Message replyMessage = new MessageBuilder()
-withRecipientJids(fromJid)

-withBody(msgBody)

-buildQ;

//STEP 4

boolean messageSent = false;

if (xmpp.getPresence(fromJid).isAvailable()) {
SendResponse status = xmpp-sendMessage(replyMessage);
messageSent = (status.getStatusMap()-get(fromJid) ==
SendResponse. Status.SUCCESS) ;

}
//STEP 5
if (messageSent) {
strStatus = "Message has been sent successfully™;
}
else {
strStatus = "Message could not be sent";
}
_log-info(strStatus);
} catch (Exception e) {
log.log(Level .SEVERE,e.getMessage());

|

The code should be familiar now but let us go through each of the steps above:

1. We have written a Java Servlet that extends the HttpServlet class and implements
the doPost(...) method since the XMPP message will be delivered via POST to
the application.

2. Inthis step, we extract out the XMPP Message object from the HTTP request.
Then we invoke a couple of getter methods on the Message object to get the
Jabber Id from where we got the message and also the body of the message. We
log this into the log file.

3. We compose a string named msgBody that simply echoes back what was sent by
the sender and then we compose a XMPP Message object named replyMessage

Episode 2 : GAEJ + XMPP and rolling your own Agent 20

to be sent to the Jabber Id that sent us this message i.e. fromJid along with the
text that we want to send in the message i.e. msgBody
4. We detect if the recipient that we are sending the response to i.e. fromJid is
available i.e. online. If yes, we send the message using the sendMessage method.
Then we determine if the message was sent successfully or not i.e. messageSent.
5. Finally, depending on the message status, we log the appropriate message in the
log file.

To complete our Servlet development, we will also need to add the <servlet/> and
<servlet-mapping/> entry to the web.xml file. The necessary elements to be added to
your web.xml file are shown below. Please note that you can use your own namespace
and servlet class. Just modify it accordingly if you do so. But make sure that the fixed
path URL i.e. /_ah/xmpp/message/chat/ is correctly mentioned in the <url-pattern/>,
since that is the path over which the Google XMPP Infrastructure will deliver the
message to you via a POST.

<servlet>

<servlet-name>xmppreceiver</servlet-name>

<servlet-
class>com.gaejexperiments.xmpptutorial . XMPPAgentServlet</servlet-class>
</servlet><servlet-mapping>

<servlet-name>xmppreceiver</servlet-name>
<url-pattern>/_ah/xmpp/message/chat/</url-pattern>
</servlet-mapping>

Finally, we have used the INFO level to log if the message was sent out successfully or
not, so we will have the change the logging level by modified the logging.properties file
present in the war\WEB-INF folder. The necessary line after modification is shown
below:

Set the default logging level for all loggers to INFO
-level = INFO

Configure the XMPP Service for our Application

To enable your application to receive XMPP messages, you need to configure the XMPP
service in your application. This is done by adding the XMPP service to the appconfig-
web.xml file that is found in the war\WEB-INF folder of the Web Application project.
Shown below is appconfig-web.xml and the relevant portion that you need to add to the
file.

<?xml version="1.0" encoding=""utf-8"7>
<appengine-web-app xmlns="http://appengine.google.com/ns/1.0">

<inbound-services>
<service>xmpp_message</service>
</inbound-services>

Episode 2 : GAEJ + XMPP and rolling your own Agent 21

;}éppengine—web—app>

Deploy the Application

To deploy the application, you will need to first create your Application ID. The
Application Identifier can be created by logging in at http://appengine.google.com with
your Google Account. You will see a list of application identifiers already registered
under your account (or none if you are just getting started). To create a new Application,
click on the Create Application button and provide the Application Identifier as
requested. Please note this name down since you will be using it for deployment.

For e.g. | have registered an application identifier named gaejxmpptutorial.

To deploy the application, click on the Deploy Icon in the Toolbar. This will present the
dialog as shown below:

You will need to provide your Email and Password. Do not click on Deploy button yet.
Click on the App Engine Project settings link. This will lead you to the screen as shown
below, where you will need to enter your Application ID [For e.g. shown below is my
Application Identifier gaejxmpptutorial]

Click on OK. You will be lead back to the previous screen, where you can click on the
Deploy button. This will start deploying your application to the GAEJ cloud. You should
see several messages in the Console window as shown below as the application is being
deployed:

You should see the message “Deployment completed successfully”” as shown above.
This means that you application is ready to serve.

See it in Action

Now that your Agent application has been deployed, it is time to communicate with it. To
do that you will need to add your Agent as a friend/contact in your IM application. To do
that you will need to know the ID of the Agent. This is made simple for you by GAEJ. If
your Application ID is for e.g. myagent and your application is XMPP enabled, then the
ID for your application will be myagent@appspot.com. In other words the ID is
APPLICATION_ID@appspot.com where APPLICATION_ID is the application
identifier for your application that you registered.

In my case, it was gaejxmpptutorial, so all I did was start up Google Talk and clicked on
Add Contact to add the Agent as shown below.

Episode 2 : GAEJ + XMPP and rolling your own Agent 22

Invite your friends to Google Talk

)
ta kg’ Talk to more of your friends for free

Sand an invitation to the people you'd like to talk to for free. Once they accaept
and download Google Talk, you'll be able to talk to them Immediately.

Fick from your list of contacts, or enter an email address directly. To add more
than one person at a time, separate the addresses with a comma.

gaejsmpptutorial@appspat com

| Choose from my contacts... J

Net»» || cancel

Once you click on Next and finish the invitation, you will receive a message in your
Google Talk as shown below, where the Agent is requested to add you as friend. It is
important that you accept that , so that it can send messages to you.

@ Fomin lrani
Setyour status message here *

\ x|

@ gaepmpptutorial@appspot.com wants to
add wou as a friend. Add as a friend?

| ves || no |

Setlings [Help

Once you do that, you will find that the Agent is available as shown below. The Agent is
available because your Application is online and running in the cloud. Cool, isn’t it?

Now you can start the conversation and see your Agent in action as shown below:

http://gaejexperiments.files.wordpress.com/2009/09/post2-2.jpg
http://gaejexperiments.files.wordpress.com/2009/09/post2-3.jpg
http://gaejexperiments.files.wordpress.com/2009/09/post2-4.jpg

Episode 2 : GAEJ + XMPP and rolling your own Agent 23

@ paepanpptutoriakivappspot.com =

‘e Serml voicermail Call Sequl Files =1 Bl v

ﬂ Romin; Hellp

gasjxmppiutonial; You sent me - Hello

ﬂ Romin; Did | really send you Hellp?

gasjxmppiutonial; You sent me - Did | really send you Helle?

Moving forward

You should now be in a position to think, code and deploy XMPP Agents of your choice
using GAEJ. | would love to see you write a few and sharing it out here with all of us.
You could write Agents that could do the following:

e Play a word game

o Provide weather, sports, traffic,etc updates

o Examination Results

e Ticket Confirmation

o Train, Air Tickets routes... almost anything that you can think of.

If you would like to get an idea of a sample XMPP Agent written using GAEJ, look no
further than the Mumbai Blood Bank Locator Agent that | wrote a while back. Take a
look and inspire all of us with your next cool Agent 007.

http://gaejexperiments.files.wordpress.com/2009/09/post2-5.jpg
http://iromin.wordpress.com/2009/09/16/mumbai-blood-bank-locator-agent/

Episode 2:Update:Communicating to another XMPP Account via your Bot 24

Episode 2 : Update : Communicating to another XMPP
Account via your Bot

I received a good comment on my second post, where we saw how to write your own
XMPP Bot and deploying it on the Google App Engine for Java (GAEJ).

It asked whether one can communicate to another Jabber account from the XMPP Bot
hosted on the GAEJ. The confusion arose because I covered the usage of Google Talk,
which is an IM client itself. And it looked from my post that you can only use Google
Talk as the client to talk the XMPP agent that you wrote.

The short answer is that yes, even if you are using another Instant Messaging (IM) client
like Spark or Pidgin, it is possible to communicate to the XMPP bot that you have written
and which is running inside the GAEJ cloud.

However, it turned out that I made a mistake in writing the code for the XMPP bot. The
Google App Engine XMPP documentation clearly states that you can communicate to
any other Jabber ID but it is not possible for their infrastructure to check for the
presence of a Jabber ID on another network except their Google Talk network. This is
fair enough. By presence, we are simply trying to see if the user is online or not.

So , we had some code in our XMPP bot that we saw earlier, which went something like
this. This code fragment was at the very end when we are sending back the echo for our
Agent.

iT (xmpp.getPresence(fromJid).isAvailable()) {
SendResponse status = xmpp-sendMessage(replyMessage);
messageSent = (status.getStatusMap().get(fromJid) ==
SendResponse . Status.SUCCESS) ;

b5

What we are doing here is that we are checking for the presence of another JabberID i.e.
making sure that is online before sending the message. This works fine on the Google
Network but not on other XMPP Networks like Jabber.org. So for e.g. our bot Jabber Id
was gaejxmpptutorial@appspot.com. And if the Jabber Id which is talking to it is
someid@jabber.org, then it will not be possible for your bot running inside of the
Google network to determine if someid@jabber.org is online or not. As a result of this,
the code will never enter the block and the message does not get sent.

So, all you have to do to send the message across to another network is to remove the
check for the isAvailable() condition and simply call the sendMessage(...) method.

http://gaejexperiments.wordpress.com/2009/09/25/gaej-xmpp-and-rolling-your-own-agent/
http://gaejexperiments.wordpress.com/2009/09/25/gaej-xmpp-and-rolling-your-own-agent/
http://www.igniterealtime.org/projects/spark/index.jsp
http://www.pidgin.im/
http://gaejexperiments.wordpress.com/2009/09/25/gaej-xmpp-and-rolling-your-own-agent/

Episode 2:Update:Communicating to another XMPP Account via your Bot

I have verified this by doing the following:

25

1. Used another IM client instead of Google Talk. I used the IM client called Spark

2.

I have an account at jabber.org which | used to login as shown below in the

Spark IM client:

F', Spark

&
park

Uzername | romin

Passwnrd !:h***********l

TEFVEr !iabber org
B Save Passward

|:| Auto Login

Accounts Advanced

Lodin

http://gaejexperiments.files.wordpress.com/2009/10/post4-3.png
http://www.igniterealtime.org/projects/spark/index.jsp

Episode 2:Update:Communicating to another XMPP Account via your Bot 26

3. I added gaejxmpptutorial@appspot.com as a contact in Spark IM client

% Spark - romin

Spark Contacts Ac

romin
0 Available W

& % 9 0 4=
I Friends (4 online)
@ bloodbanklocator
O gasixmpptutarial
2 rominkiran - Carpe Diem
& shethy saagar - Mumbai Flex User Group mest
¥ Offline Group

= Contacts . Conferences

| & Search for other people on the server | 9

http://gaejexperiments.files.wordpress.com/2009/10/post4-1.png

Episode 2:Update:Communicating to another XMPP Account via your Bot 27
4. 1 sent a chat message across to the gaejxmpptutorial bot and got back the echo as
shown below:

9 gaejxmpptutorial —_— T

O gasjxmpptutorial

"
§
w
i
“

® | gasjxmpptutorial
Y

(1122 Ahld romin: Hella Agent
(11:22 A gaepmpptutorial: You sent me - Hello Agent

Hope this clarifies that it is possible to communicate to your bot over XMPP from other
XMPP Servers. Let me know if any of you are still having issues and | welcome your
comments.

http://gaejexperiments.files.wordpress.com/2009/10/post4-2.png

Episode 3: Using the GAEJ Email Service 28

Episode 3: Using the GAEJ Email Service

Hope you have got going with the Google App Engine for Java (GAEJ) through the first
two episodes where we got started with it in the first episode and then wrote our own
XMPP bot in the second episode. In case you still need to get an introduction to the
mechanics, please do not hesitate from reading the first episode.

In this episode, we are going to look at the Email Service in GAEJ. You can read the
official documentation provided at the Google site over here. We will be keeping this
episode simple but the key to take away from this episode is the ease with which you can
integrate email sending into your GAEJ hosted applications. Please note that the service
currently provides the ability to only send emails/attachments, etc. There is no provision
at this point of time for your GAEJ hosted application to receive emails.

Our approach to this episode will be consistent with the earlier ones where we will follow
these steps:

o See the application work first
o Create a new project and write our code that utilizes the Email Service
e Deploy and see it work

Email Service in Action

My approach in this and forthcoming episodes will be to focus on the Server side
architecture and not much on the User Interface. What it means is that | could have
demonstrated the Email Service by coding up a simple HTML form that accepts the To,
Subject and Body of the Email to be sent and then it will hit a Server side script hosted in
your GAEJ application and send off the email. But instead, | will assume that you are
comfortable with whatever client (HTML, Flex, Java, etc) programming language and
simply need a way to figure out what to do on the Server side. Hence we will focus on the
Server side implementation.

To see the Email Service in Action, | have already the hosted the application that I wrote.
The application id is gaejexperiments and hence available at
http://gaejexperiments.appspot.com. In case you are still not clear on the Application
Id, I suggest you read the first episode here.

To send an email, we will use a REST like style to invoke the Email Service. This is
nothing much a servlet that has been hosted in my gaejexperiments application. To
invoke the Email Service, all you need to do is punch in the following line in your
favourite browser (IE, Firefox, Chrome, Safari,etc) and press enter:

http://gaejexperiments.appspot.com/gaejemail?email_to=[YourEmailld]&ema
il_subject=[EmailSubject]&email_body=[EmailBody]

http://gaejexperiments.wordpress.com/2009/09/22/google-app-engine-java-development-setup/
http://gaejexperiments.wordpress.com/2009/09/25/gaej-xmpp-and-rolling-your-own-agent/
http://code.google.com/appengine/docs/java/mail/
http://gaejexperiments.appspot.com/
http://gaejexperiments.wordpress.com/2009/09/22/google-app-engine-java-development-setup/

Episode 3: Using the GAEJ Email Service 29

You need to substitute the values [YourEmailld],[EmailSubject] and [EmailBody] with
your email id, a sample subject and a sample body (message text). Please make sure to
encode your text as appropriate in case you have special characters, whitespaces,
etc.

An example is shown here:

http://gaejexperiments.appspot.com/gaejemail?email_to=romin.k.irani@gma
il_com&email_subject=Hi&email body=Test

This should send out an email (on my behalf) and you will see a plain text message
returned by our Service, which will indicate if it succeeded or failed in sending out the
email. The sender of the message is coded in the service itself and we are not giving a
provision here to specify that. It is just the way that | have designed the service and you
can do it your way.

Remember that our application delivers the message onto the Google Infrastructure to
deliver the message and then it will take over and try to deliver the message. That is
pretty much standard stuff.

Develop our Project and utilize the Email Service

The first thing to do is to create a New Google Web Application Project. Follow these
steps:

1. Either click on File —=> New —> Other or press Ctrl-N to create a new project. Select
Google and then Web Application project. Alternately you could also click on the New
Web Application Project Toolbar icon as part of the Google Eclipse plugin.

2. In the New Web Application Project dialog, deselect the Use Google Web Toolkit and
give a name to your project. | have named mine GAEJExperiments. | suggest you go with
the same name so that things are consistent with the rest of the article, but | leave that to
you.

3. Click on Finish

This will generate the project and also create a sample Hello World Servlet for you. But
we will be writing our own Servlet.

Coding the GAEJEmailServlet.java

Create a new Servlet in your Project as shown below. | have created the
GAEJEmailServlet.java in the package com.gaejexperiments.email. You can choose a
package of your choice. The code is straightforward and is listed below:

| package com.gaejexperiments.email;

http://gaejexperiments.wordpress.com/2009/10/09/episode-3-using-the-gaej-email-service/#viewSource
http://gaejexperiments.wordpress.com/2009/10/09/episode-3-using-the-gaej-email-service/#viewSource

Episode 3: Using the GAEJ Email Service 30

import java.io.lOException;
import java.util .Properties;

import javax.mail .Message;

import javax.mail .Session;

import javax.mail .Transport;

import javax.mail._internet. InternetAddress;
import javax.mail . internet_MimeMessage;
import javax.servlet.ServletException;
import javax.servlet.http.*;

@SuppressWarnings(*'serial')

public class GAEJEmai lServlet extends HttpServilet {

public void doGet(HttpServletRequest req, HttpServletResponse resp)
throws 10Exception {

String strCallResult = "*;
resp.setContentType("'text/plain™);
try {

//Extract out the To, Subject and Body of the Email to be sent
String strTo = req.getParameter(“'email_to');

String strSubject = req.getParameter(“'email_subject'™);

String strBody = req.getParameter(“'email_body');

//Do validations here. Only basic ones i.e. cannot be null/empty
//Currently only checking the To Email field
if (strTo == null) throw new Exception(*'To field cannot be empty.™);

//Trim the stuff
strTo = strTo.trim(Q);
if (strTo.length() == 0) throw new Exception(*'To field cannot be

empty.");

//Call the GAEJ Email Service

Properties props = new Properties();

Session session = Session.getDefaultlnstance(props, null);
Message msg = new MimeMessage(session);

msg.setFrom(new InternetAddress(*'#YOUR EMAIL ADDRESS HERE#'));
msg.addRecipient(Message.-RecipientType.TO,

new InternetAddress(strTo));

msg.setSubject(strSubject);

msg.setText(strBody);

Transport.send(msg) ;

strCallResult = "Success: "+ "Email has been delivered.';
resp.getWriter().printin(strCallResult);

catch (Exception ex) {
strCallResult = "Fail: " + ex.getMessage();
resp.getWriter() -printin(strCallResult);

+
}

@Override

Episode 3: Using the GAEJ Email Service 31

public void doPost(HttpServletRequest req, HttpServletResponse resp)
throws ServletException, I0Exception {
doGet(req, resp);

b

Let us go through the main pieces of the code:

1.

2.

| have provided both GET and POST handlers in the servlet and the POST
handler simply invokes the GET handler here.

Then we parse the request parameters for the recipient email address (email_to)
and the subject and body of the email i.e. email_subject and email_body
respectively.

We do some basic validation on the email_to field to make sure that it is not
empty. | am currently not doing at validation on the subject and body fields.
Additionally, you can easily modify this to receive more than one email address
and loop through them yourself.

Finally we have the block of code that sends email. This is pretty much standard
JavaMail stuff that is used over here. We get a mail session object. Then we
create the MimeMessage in which we can populate the sender (from Email id),
the recipient and finally the subject and body. We use the Transport object to send
the email out and return back a plain text string indicating success or failure in
delivering the email to the transport.

Please note that the sender email id needs to be populated by you. I have
intentionally left it as #Y OUR EMAIL ADDRESS HERE# in the code above.

Configuring the Servlet in web.xml file

To complete our Servlet development, we will also need to add the <servlet/> and
<servlet-mapping/> entry to the web.xml file. This file is present in the WEB-INF
folder of the project. The necessary fragment to be added to your web.xml file are shown
below. Please note that you can use your own namespace and servlet class. Just modify it
accordingly if you do so.

<servlet>

<servlet-name>GAEJEmai lServilet</servlet-name>
<servlet-class>com.gaejexperiments.email .GAEJEmailServlet</servilet-
class>

</servlet>

<servlet-mapping>

<servlet-name>GAEJEmai lServilet</servlet-name>
<url-pattern>/gaejemail</url-pattern>

</servlet-mapping>

http://gaejexperiments.wordpress.com/2009/10/09/episode-3-using-the-gaej-email-service/#viewSource

Episode 3: Using the GAEJ Email Service 32

Deploy the Application and utilize it

To deploy the application, you will need to first create your Application ID. The
Application Identifier can be created by logging in at http://appengine.google.com with
your Google Account. You will see a list of application identifiers already registered
under your account (or none if you are just getting started). To create a new Application,
click on the Create Application button and provide the Application Identifier as
requested. Please note this name down since you will be using it for deployment.

For e.g. | have registered an application identifier named gaejexperiments.
To deploy the application, follow these steps (they should be familiar to you now):

1. Click on the Deploy Icon in the Toolbar.

2. In the Deploy dialog, provide your Email and Password. Do not click on Deploy
button yet.

3. Click on the App Engine Project settings link. This will lead you to a dialog,
where you need to enter your Application ID [For e.g. my Application Identifier
gaejexperiments]

4. Click on OK. You will be lead back to the previous screen, where you can click
on the Deploy button. This will start deploying your application to the GAEJ
cloud. You should see several messages in the Console window as the application
is being deployed.

5. Finally, you should see the message “Deployment completed successfully”.

This means that you application is ready to serve and you can verify the Email service by
invoking the appropriate url which you can punch into your browser. The format will be
the following:

http://[YourApplicationld].appspot.com/gaejemail?email_to=[YourEmailld]
&email_subject=[EmailSubject]&email_body=[Emai IBody]

Moving forward

In this episode, we have seen how to utilize the Email Service provided by the Google
App Engine. The code that we covered is straightforward to implement in your
application. Do note once again that the Email Service currently does *not allow* for
functionality that can receive emails. You can study the JavaMail API in more detail to
understand how to do things like sending attachments in your email too. You can do that
using the Google App Engine Email Service.

The other key thing to take away from this episode is also a focus on the server side api
rather than building HTML front-ends, etc. | leave that to the user to design and
implement since invoking a standards based HTTP GET or POST is now possible in
almost any client programming platform.

http://appengine.google.com/
http://gaejexperiments.wordpress.com/2009/10/09/episode-3-using-the-gaej-email-service/#viewSource

Episode 3: Using the GAEJ Email Service 33

In the next episode, we shall look at the Networking API available under GAEJ. The
focus will be on invoking extrernal URLs and consuming external Web Services or even
RSS feeds.

Episode 4:Building a Dictionary App:Using the GAEJ URL Fetch Service 34

Episode 4: Building a Dictionary App : Using the GAEJ
URL Fetch Service

Welcome to Episode 4 of GAEJ Experiments. In this episode, we will learn how your
GAEJ Application can invoke external URLs and get data back from them. In the process
we will build a fully capable Dictionary Application. While it may not be a complete
application, it will demonstrate just about enough how you can integrate external services
into your application.

This episode is particularly important given the fact that there are hundreds of public
APIs now available out there on the web, which your application can integrate. | strongly
recommend visiting The Programmable Web that catalogs hundreds of Web APIs that are
available today and which you can integrate into your application.

Dictionary Application in Action

In order to maintain a consistent style across the episodes so far, let us first watch the
application in action to better understand what we will be building over here. Follow
these easy steps:

1. Navigate to http://gaejexperiments.appspot.com. This will result in a page as
shown
below:

) GAE] Experiments - Mozilla Firefox

File Edit “iew Higtory Bookmarks Taool: Help

- c }-V(B ||_-L]|http:.-"fgaeie:-:periments.appspu:ut.u:-:uma" i I'\.‘(,"'|Wikipedia [eu.'

J' | GAEJ Experiments [=] =
GALEJ Experiments

|List of Experunents

This expenment shows how to send an email using the GAET Email

Email Service .
. SErTiCE

Dhctionarv
Service

This expenment shows how mvoke a Network TEL and parse the data

http://gaejexperiments.files.wordpress.com/2009/10/s1.png
http://www.programmableweb.com/
http://gaejexperiments.appspot.com/

Episode 4:Building a Dictionary App:Using the GAEJ URL Fetch Service 35

2. Click on Dictionary Service link. This will lead you to a page shown

below:

File Edit “iew Higtory Bookmarks Taool: Help

C;. - c x B ||j|http:.-"x'gaeie:-:periments.appspnt.cnm;"dic T I'\.‘(ﬂ'*|Wikipedia [eu}:"

J |j http:Hgaeiexperim_nm!dictinnar}l_html| - | F

Dictionary Lookup

Lookup meaning of wnrd:"
Meaning :

Lookup Dictionary |

3. Enter any word that you wish to lookup in the dictionary and click on Lookup
Dictionary. For e.g. engine. This will display the meaning of the word as shown
below:

) Mozilla Firefox

File Edit iew Higtorw Bookmarks Toolz Help

i;. - c x R I |j | hitp: //gasjexpeniments. appspot. comddic 57 I"l."(-"*| Wikipedia [eu';':"

J |j http:Hgaeiexperim_um!di-::tiunary.html| == | F
|

Dictionary Lookup

Lookup meaning of wnr:l:lengine

Meanmg :

engine n 1: motor that cotverts thermal energy to mechanical wotk 20 something uzed to
achieve a purpose; "an engmme of change" 3 a wheeled vehicle consisting of a self-propelled
engine that 15 used to draw trains along railway tracks [syn {locotmotive, {locotnotive
engine}, {ralway locomotive]

| Lookup Din:tiu:mal’}f’él o

http://gaejexperiments.files.wordpress.com/2009/10/s2.png
http://gaejexperiments.files.wordpress.com/2009/10/s3.png

Episode 4:Building a Dictionary App:Using the GAEJ URL Fetch Service 36

Behind the Scenes

Let us understand how the above application is working. The key points to note in the
flow are given below:

1. The dictionary page shown in step 2 above is a simple HTML form page. The
only user input needed in this step is the word that you wish to look up in the
dictionary.

2. On click of the Lookup Dictionary button, a Servlet is invoked in our GAEJ
Application. The Servlet will utilize the GAEJ URL Fetch Service to invoke an
external Dictionary Service.

3. The Dictionary Service is hosted at a site called
http://services.aonaware.com/DictService/DictService.asmx . One of the
service operations is Define and you can try it out here. It supports a REST style
interface (GET/POST) for invoking it, so that makes our task simple. Give it a try
here to better understand what we are integrating or simply punch in the following
in your browser:

http://services.aonaware.com/DictService/DictService.asmx/Define?
word=trial

4. This service takes in a word and returns us a XML Response which contains the
meaning of the word in several dictionaries. We parse out the dictionary meaning
and return that back to the client (HTML form).

5. The HTML form that renders the meaning as shown in the screen above.

URL Fetch Service

The core piece that we will be utilizing in our application here is an ability to invoke
external URLSs. This is provided by the URL Fetch service of the Google App Engine. It
allows us to invoke any external URL and receive the data from the URL. At a high level,
usage of the URL Fetch service is pretty simple and a boiler plate code is shown below:
[Most details have been omitted]

try {
URL url = new URL(PUT_EXTERNAL_ URL_HERE);

BufferedReader reader = new BufferedReader(new
InputStreamReader(url .openStream()));

String line;
StringBuffer responseData = new StringBuffer();

//Read the entire response in this loop
while ((line = reader.readLine()) != null) {
responseData.append(line);

reader.close();

http://code.google.com/appengine/docs/java/urlfetch/
http://services.aonaware.com/DictService/DictService.asmx
http://services.aonaware.com/DictService/DictService.asmx?op=Define

Episode 4:Building a Dictionary App:Using the GAEJ URL Fetch Service 37

//Process the data from the responseData StringBuffer
//Might involve Parsing the XML or JSON Response format, etc.

catch (Exception e) {
//. ..

by

This is pretty much standard Java code and it involves opening an inputstream to the
external URL and collecting the response in a local variable. You can then decide what to
do with the response data received. For e.g. most external services provide a XML or
JSON formatted response, which you may have to parse out and then proceed with your
application logic.

In our Dictionary Application here, we will be receiving a XML response, which we will
simply parse out and return back to the HTML client.

Developing our Application

The first thing to do is to create a New Google Web Application Project. Follow these
steps:

1. Either click on File —> New —> Other or press Ctrl-N to create a new project. Select
Google and then Web Application project. Alternately you could also click on the New
Web Application Project Toolbar icon as part of the Google Eclipse plugin.

2. In the New Web Application Project dialog, deselect the Use Google Web Toolkit and
give a name to your project. | have named mine GAEJExperiments. | suggest you go with
the same name so that things are consistent with the rest of the article, but I leave that to
you. In case you are following the series, you could simply use the same project and
skip all these steps altogether. You can go straight to the Servlet Development
section.

3. Click on Finish

This will generate the project and also create a sample Hello World Servlet for you. But
we will be writing our own Servlet.

Episode 4:Building a Dictionary App:Using the GAEJ URL Fetch Service 38

The Front end HTML form [dictionary.html]

Create a new HTML file in the war directory of your application. In that directory, you
will find an index.html that is generated for you. So you can either use index.html or
generate a new HTML file as | have done. Name this file as dictionary.html and code it
as shown below:

The first thing that we will do is to code out a simple HTML form that takes a single
parameter as an input. This parameter is the word that we need to lookup in the
dictionary. We will use a bit of AJAX here to dynamically call our servlet and display the
response that we get.

<html>
<head>
<script type=""text/javascript'>
var xmlhttp;
function lookupDictionary(word)
{
xmlhttp=null;
if (window.XMLHttpRequest)
{// code for IE7, Firefox, Opera, etc.
xmlhttp=new XMLHttpRequest();
}
else iIf (window.ActiveXObject)
{// code for I1E6, IE5
xmlhttp=new ActiveXObject(*'"Microsoft_ XMLHTTP™);

3
it (xmlhttp!=null)

xmlhttp.onreadystatechange=state Change;

var url = "'/gaejdictionaryservice?word=""+word;
xmlhttp.open("'GET" ,url,true);
xmlhttp.send(null);

}

else

{
alert('Your browser does not support XMLHTTP."");

}
}

function state_Change()

{

if (xmlhttp.readyState==4)
{// 4 = "loaded"

if (xmlhttp.status==200)

{

// 200 = "OK"
document.getElementByld("DictionaryServiceResponse”) . innerHTML=xmlhttp
.responseText;

}

else

alert("'Problem looking up Dictionary Service :" + xmlhttp.statusText);

Episode 4:Building a Dictionary App:Using the GAEJ URL Fetch Service 39

+
}
}

</script>
</head>

<body>

<h2>Dictionary Lookup </h2>

<hr/>

<h3>(Powered by Aonaware Dictionary
Service)</h3>

<hr/>

<p>

Lookup meaning of word:<input type=""text" id="word"></input>
</p>

<p>Meaning :

</p>

<button onclick="lookupDictionary(word.value)'>Lookup
Dictionary</button>

</body>

Here are some key points from the code above. For most web programmers it is pretty
much standard stuff:

1. We have a single input field HTML element with an id named word. There is a
button with a label Lookup Dictionary, on click on which, we invoke a
Javascript function called lookupDictionary, passing in the word value.

2. The lookupDictionary method builds up the standard XMLHttpRequest object
that we shall use to send our request across. The request url is
/gaejdictionaryservice with a single parameter named word, which contains the
value of the word that we need to lookup in the dictionary.

3. Note that /gaejdictionaryservice is our servlet endpoint that we will be seeing in
the next section. This servlet will take it the word parameter, and use the URL
Fetch Service to invoke the external Dictionary APl and return us back the
response.

4. The response when returned is inserted into the span element named
DictionaryServiceResponse in the above HTML form to display the response
received.

Next we shall code the heart of our application a servlet named
GAEJDictionaryService.

Coding the GAEJDictionaryService Servlet
[GAEJDictionaryService.java]

http://services.aonaware.com/DictService/
http://services.aonaware.com/DictService/
http://services.aonaware.com/DictService/

Episode 4:Building a Dictionary App:Using the GAEJ URL Fetch Service 40

Create a new Servlet in your Project as shown below. | have created the
GAEJDictionaryService.java in the package com.gaejexperiments.networking. You can
choose a package of your choice. The code is straightforward and is listed below:

package com.gaejexperiments.networking;

import java.io.BufferedReader;

import java.io. lOException;

import java.io. InputStreamReader;

import java.io.StringReader;

import java.net.URL;

import javax.servlet.ServletException;
import javax.servlet.http.*;

import javax.xml.parsers.DocumentBui lder;
import javax.xml.parsers.DocumentBui lderFactory;
import javax.xml .xpath.XPath;

import javax.xml .xpath.XPathConstants;
import javax.xml .xpath.XPathExpression;
import javax.xml _xpath.XPathFactory;

import org.w3c.dom.Document;
import org.-w3c.dom._NodeList;
import org.xml._sax. InputSource;

@SuppressWarnings(*'serial'")

public class GAEJDictionaryService extends HttpServilet {

public void doGet(HttpServletRequest req, HttpServletResponse resp)
throws 10Exception {

resp.setContentType(*'text/plain™);

try {

//Extract out the word that needs to be looked up in the Dictionary
Service

String strWord = req.getParameter(*‘'word™);

String strCallResult = ';

//Do validations here. Only basic ones i.e. cannot be null/empty
if (strWord == null) throw new Exception(**Word field cannot be empty.");

//Trim the stuff

strWWord = strWord.trim(Q);

if (strWord.length() == 0) throw new Exception(**Word field cannot be
empty.");

String strDictionaryServiceCall =
"http://services.aonaware.com/DictService/DictService.asmx/Define?word=

strDictionaryServiceCall += strWord;

URL url = new URL(strDictionaryServiceCall);
BufferedReader reader = new BufferedReader(new
InputStreamReader(url .openStream()));
StringBuffer response = new StringBuffer();
String line;

http://services.aonaware.com/DictService/DictService.asmx/Define?word=

Episode 4:Building a Dictionary App:Using the GAEJ URL Fetch Service 41

while ((line = reader.readLine()) != null) {
response.append(line);

reader.close();
strCallResult = response.toString();

DocumentBui lderFactory builderFactory =
DocumentBui lderFactory.newlnstance();
DocumentBuilder builder = builderFactory.newDocumentBuilder();
Document doc = builder.parse(new InputSource(new
StringReader(strCallResult._toString())));

XPathFactory factory = XPathFactory.newlnstance();

XPath xpath = factory.newXPath();

XPathExpression expr =
xpath.compile(*'//Definition[Dictionary[ld="wn"]]/WordDefinition/text()"
)

Object result = expr.evaluate(doc, XPathConstants.NODESET);
NodeList nodes = (NodeList) result;

for (int 1 = 0; 1 < nodes.getLength(); i++) {

strCallResult = nodes.item(i).getNodeValue();

}

resp.getWriter() -printin(strCallResult);

catch (Exception ex) {

strCallResult = "Fail: "+ ex.getMessage();
resp.getWriter().printin(strCallResult);

}

}

@Ooverride

public void doPost(HttpServletRequest req, HttpServletResponse resp)
throws ServletException, I10Exception {

doGet(req, resp);

b

Let us go over the key points in the code above:

1. I have provided both GET and POST handlers in the servlet and the POST
handler simply invokes the GET handler here.

2. Then we parse the request parameters for the word parameter that we need to look
up in the dictionary (word) and we do some basic validation to make sure that it
IS not empty.

3. The Dictionary Service that we plan to use is available at the following URL.:

Episode 4:Building a Dictionary App:Using the GAEJ URL Fetch Service 42

http://services.aonaware.com/DictService/DictService.asmx/Define?
word=[YOUR_WORD_HERE]

In the above URL, you need to provide the word. So what we do in the code is to
simply append the word request parameter that was passed.

Next, we use the URL Fetch Service as discussed earlier to collect the entire
response.

The response returned to use is in XML format and the service returns us the
meaning of the word based on 6 dictionaries. We will be using just one of those
dictionaries WordNet 2.0 which is the 3rd definition in the XML. | suggest that
you punch in the following url to understand what we will be parsing out here. |
have used the word ‘engine’ here.

10.

11.

12.

13.

http://services.aonaware.com/DictService/DictService.asmx/Define?
word=engine

Finally we use XPath. | intentionally used this to demonstrate how easy it is to use
XPath to extract out the element text that we are interested in. You are free to
choose an alternative way of extracting out the text value. You could use standard
SAX/DOM parsing too if you wish. Whatever you are comfortable with will
suffice for the example.

We first build the Document object by using the standard
DocumentBuilderFactory and DocumentBuilder classes.

Then on the Document object doc, we evaluate the XPath expression. The XPath
expression is //Definition[Dictionary[ld="wn']]/WordDefinition/text().

The XPath expression given above can be read as following. First consider the
/[Definition[Dictionaryld ='wn']] which means that find all definitions anywhere
in the document which have a child element named Dictionaryld whose value is
‘wn’. This is the Definition that we are interested in extracting.

Once that is found, comes the rest of the XPath expression, which says that for
that Definition element found, get a child element named WordDefinition and
extract out its text() value. This is returned as a collection of Text nodes.

Finally, we iterate through the Text Nodes and get the value which we then send
back as a response.

| suggest that if you are still having a problem following the code, try out the
URL as mentioned in step 6, study the XML and then the XPath expression will
become clear. The rest of the code is standard XML/XPath code from the Java
SDK.

Servlet Configuration

To complete our Servlet development, we will also need to add the <servlet/> and
<servlet-mapping/> entry to the web.xml file. This file is present in the WEB-INF
folder of the project. The necessary fragment to be added to your web.xml file are shown

below.

Please note that you can use your own namespace and servlet class. Just modify it

accordingly if you do so.

Episode 4:Building a Dictionary App:Using the GAEJ URL Fetch Service 43

<servlet>
<servlet-name>GAEJDictionaryService</servlet-name>
<servlet-
class>com.gaejexperiments.networking.GAEJDictionaryService</servilet-
class>
</servlet>
<servlet-mapping>
<servlet-name>GAEJDictionaryService</servlet-name>
<url-pattern>/gaejdictionaryservice</url-pattern>
</servlet-mapping>

Deploying and running your application

To deploy the application, you will need to first create your Application ID. The
Application Identifier can be created by logging in at http://appengine.google.com with
your Google Account. You will see a list of application identifiers already registered
under your account (or none if you are just getting started). To create a new Application,
click on the Create Application button and provide the Application Identifier as
requested. Please note this name down since you will be using it for deployment.

For e.g. | have registered an application identifier named gaejexperiments.
To deploy the application, follow these steps (they should be familiar to you now):

1. Click on the Deploy Icon in the Toolbar.

2. In the Deploy dialog, provide your Email and Password. Do not click on Deploy
button yet.

3. Click on the App Engine Project settings link. This will lead you to a dialog,
where you need to enter your Application ID [For e.g. my Application Identifier
gaejexperiments]

4. Click on OK. You will be lead back to the previous screen, where you can click
on the Deploy button. This will start deploying your application to the GAEJ
cloud. You should see several messages in the Console window as the application
is being deployed.

5. Finally, you should see the message “Deployment completed successfully”.

This means that you application is ready to serve. Depending on whether you used
index.html or dictionary.html, you should be able to access your application at the
following url:

http://<YourAppld>.appspot.com/dictionary.html

or

| http://<YourAppld>.appspot.con/index.html

Type in a word and check if the meaning is being returned.

http://appengine.google.com/

Episode 4:Building a Dictionary App:Using the GAEJ URL Fetch Service 44

Moving forward

In this episode, we have seen how to utilize the URL Fetch Service provided by the
Google App Engine. This service provides us with a convenient way to access external
services that can be integrated into our application. Creating Mashup applications would
be straightforward with the URL Fetch Service.

You can integrate other external services, RSS feeds in this fashion. Just give it a try.

Episode 5: Upgrading to Google App Engine 1.2.6 45

Episode 5: Upgrading to Google App Engine 1.2.6

If you have been following this blog, the version of the Google App Engine SDK was
1.2.5. Recently Google announced a release 1.2.6 of its App Engine SDK.

I think you should upgrade to the latest version since it a very cool feature that resonates
with an earlier episode titled Episode 3: Using the GAEJ Email Service. That episode
covered using the Email Service that allows you to send an email from your GAEJ
application. The latest release 1.2.6 of the App Engine SDK for Java allows you to
receive incoming emails too in your application. And that will be the topic in the next
episode, so | thought it is best that | mention here that it is time to upgrade to version
1.2.6 of the App Engine SDK.

Here are a few steps and points to note to upgrade to version 1.2.6 of the SDK. | am
assuming that all your development/deployment is being done via the Google App
Engine plugin for Eclipse since that is what we have used throughout this series. Here are
the steps:

1. Launch the version of Eclipse that you have been using so far for the GAEJ
development.

2. Go to Window —> Preferences. And then click on Google —> App Engine. You can
see the version of the App Engine SDK and most likely it is 1.2.5

3. Stay in Preferences and go one level higher in the tree on the left to Google. You will
see a tiny checkbox that mentions “Notify me about updates”. If you have this selected,
then you should have already got a notification status in the status bar in Eclipse,
somewhere in the bottom of the screen. It looks something like this:

€D Goodle updates available...

Clicking on this link would bring up a dialog that looks like the one shown below:
£} Google Plugin Update |

\i’) An update iz available for the Google plugin. Go to Help > Software Lpdates to
inzkall it.

Depending on your version of Eclipse, you might see a different message and maybe the
menu options might be slightly different but the process is a standard one in Eclipse to
update your plugins.

http://gaejexperiments.files.wordpress.com/2009/10/scr1.png
http://gaejexperiments.files.wordpress.com/2009/10/scr2.png
http://googleappengine.blogspot.com/2009/10/app-engine-sdk-126-released-with.html
http://gaejexperiments.wordpress.com/2009/10/09/episode-3-using-the-gaej-email-service/

Episode 5: Upgrading to Google App Engine 1.2.6 46

4. Even if you had deselected the option to Notify about updates, the process to upgrade
the plugin/SDK to the latest version 1.2.6 is the same. Go to Help —> Check for Updates
in the main menu. This is for version 3.5 of Eclipse that I use (Galileo version).

This will bring up a dialog and show all your installed components/plugins in Eclipse that
have a newer version (update) for you to install. A sample screenshot from my Eclipse
setup is shown below:

{:m!.railahle Updates _|O

Available Updates _
p I- (¥]

by

Check the updates that pou wizh to install, R
S
M arme | Y erzsion | Id
O “r:Eclipse IDE for Java EE Developers 1.2.1.20090918-0703 epp.package. jge
w1+ Google App Engine Java SOE 1.26 1.2 6520091 07131704 Com. google. appendine. e
w1 Google Plugin for Eclipse 3.5 1.1 2520091 07131704 com.google.gdt eclipse.
s Google web Toalkit SDE.1.7.1 1.7 1 w2009092217 3 cam.gaodle. gut. eclipse. s
O ¢ Scala Eclipse Plugin 2.7 B.final ch.epfllamp.zdt feature.g
4] |]
Select All Dezelect Al
Details
;l
I

'@:‘ < Back I Hext I Eiristy Cancel

5. Select only the Google specific upgrades. You should be able to see the version 1.2.6
of the SDK shown as above. Click on the Next button. This will confirm the updates as

shown below:

http://gaejexperiments.files.wordpress.com/2009/10/scr3.png

Episode 5: Upgrading to Google App Engine 1.2.6 47

¥ Available Updates
Update Details

Review and caonfirm the updates.

@ aogle Plugin for Eclipse 3.5 1.1.2.v... caom.google. gdt.eclipse. suite. &35 featu. .
@ Google Web Toolkit SDE. 1,71 1.7.1.v... com.google.gwt eclipze. sdkbundle.e3...

Click on Next, accept all the terms as shown below and proceed with Finish
appropriately.

http://gaejexperiments.files.wordpress.com/2009/10/scr4.png

§* Data Took Platform Enablament for

1t Data Tools Platiorm Enablenment for..
:] ‘Data Tool: Flatform Enablement for..
«J* Data Tooks Platform Enablement for...
1= Data Toots Platform Enablement for..
st Data Tools Platform Enablement for..
-Ej:= Data Tools Plstform E nablament for,.
. 1.7 0200308280400
%1+ Data Tooks Plattorm Enablement for..
st Data Tooks Plattorm Enablement for..
-ﬁ LData Tool: Platiarm Ensblemsnt for,,
% Data Tooks Platfarm Enablement for..
<= Data Tooks Plattorm Enablement for..
Wt Data Tooks Platform Enablement for..
WA Data Tools Plstiom Enablement for...

1.7.0v200308230400-
1.7.0.v2003908280400-1
1.7.0v200308230400-]
1.7.0%200905280400-!

1.7.0v200905280400-
1.7.0.v200908220400.!

1.7 % 200908280400-
1.7.1.%200908280400-
1.7.0»200308280400.!
1.7.0»200908280400-!
1.7 0.%200905280400-!
1.7.0+200908280400-!
1.7.0.v200908230400-

Episode 5: Upgrading to Google App Engine 1.2.6 48
1’:1' Available Updates M[=1E3
Review Licenses | !

Licerzes must be ieviewed before the software can be installed The inchudes licenses for softwane required to -

complete the install ' _-3‘_)£-
bz with hoerses: Licange taxt

Name | version] [ECLIPSE FOUNDATION SOFTWARE USER -

4 Data Tools Platfor Connectivity 1.7,0v200906280400- | [1GREEMENT

1+ Data Toots Platform Enablement 1.7 0 200805280400- T

[Jzage Of Content

THE ECLIPSE FOUNDATION MAKES AVAILABLE
SOFTWARE, DOCUMENTATION, INFORMATION
ANDOR

OTHER MATERLALS FOR OFEMN SOURCE
PROJECTS [COLLECTIVELY "COMTEMT").

USE OF THE CONTENT 1S GOVERNED BY THE
TERMS AND CONDITIONS OF THIS
AGREEMENT AND/0R THE TERMS AND
COMDITIONS OF LICENSE AGREEMENTS OR
MOTICES INDICATED OR REFERENCED BELDW.
B USING THE CONTENT, YOU

AGHEE THAT YOUR USE OF THE CONTENT 1S
GOVERMED BY THIS AGREEMENT

AND/OR THE TERMS AND COMDITIONS OF &ANY

APPLICABLE LICENSE AGREEMENTS =l

1.7.0v200908230400-,

1.7 M. .i‘.ll'll'ﬂl'll:l"'.lﬂl'l AN
[

(" || accept the terms of the license agreements
" | do not accept the tems of the boense agisements

-:'J_-- Data Took Platform JOT Enablement

_1-_n-4-7..m1.~ [IETTCPES Y IEW PN o AN
4

Ir 3!
AL

flewl I Firash I

Cancel |

This will download, install the update to the SDK. | recommend to restart Eclipse as
prompted.

Post Installation Steps

The following two steps are very important in order to start using the latest version
correctly. This is what worked for me and | am not sure if there are other things that are
still required but this two steps should suffice for now:

1. Make sure that all your projects moving forward use version 1.2.6 of the SDK. This is
not mandatory but required if you wish to use the new features available in version 1.2.6.
To do this, go to Window —> Preferences. Click on Google —> App Engine as shown
below:

http://gaejexperiments.files.wordpress.com/2009/10/scr5.png

Episode 5: Upgrading to Google App Engine 1.2.6 49

CiPreferences _[O] x]
| App Engine i
-0, Add, remave ot doweioad SDKs
- Anckoid
- Ak By defaudl. the chacked SDK iz added ha he busld pash of newly coeated projects.
- Dhata Managemanl
S 5Dk
Aap Engine Mame [verson | Location [|
‘wieh Toalkid [= App Ergrall) 126 Chackpes-jge-galiso-win 12 echpre’ plugre \eo..
& Halp Remove I
+ - Irslal/Updsts i
Java D_I
Javs EE
JOT Weaving

+- Plug-in Development

#- Ramabe Systems

+ - Aun'Debug

¥ Scala

- Servel

¥ Tasks

+ I’bﬂ'-l
Teiminal

+- Usage Dats Collscton
W aldation

+- Wb

‘Web Sanvices

=- ADaclel

& HML

? ok | Ccoel |

In this screen, you are seeing only only entry for the version 1.2.6 of the SDK. Normally
you will see more than one (the older 1.2.5 SDK) will also be shown and it will be the
default selected one. You are not seeing it over here in my setup, because | deleted it and
am using only 1.2.6 of the SDK as shown. Select and you will find that as mentioned in
the dialog above, the checked SDK will be used by default for newly created projects.

2. Google App Engine SDK also ships with a development server that you can use for
local testing. We will be using it in the next episode. You can simply right click any
project in the project hierarchy and select Run As —> Web Application to launch your
GAEJ application in the development server. The development server is automatically
started as you will notice in the console window and you can access your application at
http://localhost:8080. But an additional step now needs to be performed to help the
development server start. This has got added since version 1.2.6 — it looks like that.
Follow the next steps to get this correctly setup.

3. Select the project you want to run in the Project Hierarchy on left. Right click it and
select Run As —> Run Configurations... as shown below:

http://gaejexperiments.files.wordpress.com/2009/10/scr6.png

Episode 5: Upgrading to Google App Engine 1.2.6 50

bankagn Com. gagjexperiments.email;:

BytehrrayInputStream;[]

hos ("serial™)
LEJReceliveEmallierviet extends Hot
ic final Logger Jlog = Logger.ge

" H&hwlﬂlﬁﬂ (i

P
[MyFirstGAE Pro
o o Mai il doPost (HttpServletBRegquest reg, I

ows ServlecException, IOExceptio:

IE

pperties props = new Properties();
53ion sesslon = Session. getlefauli
eMessage message = new HimeNesaac

¥xtract out the important fieslds 3
ing subject = message.getSubject

Him Conbgueahons

4. This will bring up the Run Configuration as shown below. Notice the Error message
displayed which I have highlighted in Yellow.

http://gaejexperiments.files.wordpress.com/2009/10/scr7.png

Episode 5: Upgrading to Google App Engine 1.2.6 51

manage, and run configurations
{3 Projects using dpp Engine 1. 26 o laber requite & Java agent. hdd this VM angumeni:
memwmw%mmgaﬁmmmw

8 Andcid Appication
) Andboid JUnik Test

@ Eclpse Applcation

9 Eclipse D Toaks

-~ Gensiic Server

5 Generic ServedExiemnal L
— H HTTP Preview

- H JEE Preview

1] Java Appet

T Java bpplcation

- JUit

- Uit Phagin Test

& 056G Framework

@ 151 Scala Applcalion

iy Task Corleot Test

~© St

5. So all you need to do is add the VM Argument that they are mentioning. Simply copy
the string starting from -javaagent to the end. And paste it in the VM Arguments field in
the same dialog as shown below:

http://gaejexperiments.files.wordpress.com/2009/10/scr8.png

Episode 5: Upgrading to Google App Engine 1.2.6 52

Create, manage, and run configurations
Fun a'wb dpalcation

K =
h-pe il bewt
— €1 Andhoid Appication
) Andboid JUnik Test
o tpache Tomcat

@ Eclpse Applcation
—JE Ecipss Data Toak:
-~ Gensiic Server

; 5 Geneic ServerE sternal La
o GWT JUnit Test
5 HTTP Preview
- H JEE Preview

B Java Apolet

T Java bpplcation
—Ju JUrit

- Uit Phagin Test
; 4 0561 Framework
&1 Scdafpplealion
iy Tazk Cortest Test
E-ﬂ;cbﬁpni::aﬁm

You will find that the error message will go away. You can click Run now to execute the
Web Application. The server will be able to start successfully now.

This completes the upgrade of your Google plugin to version 1.2.6 of the SDK.

Upcoming Episode

Make sure that you have version 1.2.6 of the SDK setup as mentioned in this episode.
The next episode coming in a day will show how your Google App Engine applications
can receive incoming emails, which is one of the newly enabled features of version 1.2.6
of the SDK. Till then, happy upgrading!

http://gaejexperiments.files.wordpress.com/2009/10/scr9.png

Episode 6: Handling incoming Email in your application 53

Episode 6: Handling incoming Email in your
application

Welcome to Episode 6 of this series. In this episode, we will learn how your Google App
Engine Java (GAEJ) Application can receive incoming email.

In an earlier episode of this series, we have covered how to use the Email Service of
GAEJ to send out emails from your application. At that point in time, we were using
version 1.2.5 of the AppEngine SDK. That version did not provide support for handling
incoming email. Since then a newer version of the AppEngine SDK for Java 1.2.6 has
been released. And one of the nice features of this new release is support for incoming
email in your application. What it means is that anyone can send an email to your GAEJ
hosted application, it can receive an email and then you can process and perform some
business logic with that as required.

Prerequisites

Before we move on, it is important that you have a working setup of the environment and
are comfortable with developing a new project using the Google Eclipse plugin. If not,
please go through earlier episodes that contained detailed setup information along with a
few development episodes like using Email Service, using the URL Fetch service, etc.

The most important prerequisite is to make sure that you have upgraded your Eclipse
environment to the latest AppEngine SDK i.e. 1.2.6. Please go through the following :
Episode 5: Upgrading to Google App Engine 1.2.6

A quick check: To make sure that you have version 1.2.6 of the SDK installed, do the
following:

1. In your Eclipse IDE, go to Window —> Preferences.

2. Navigate to Google —> App Engine

3. You should see version 1.2.6 of the SDK installed. And make sure that it is the default
one by selecting it. By selecting it, it will be added to the Build Path of your Google Web
Application projects. And we need the latest SDK since it will have support for the
Incoming Email feature.

Receiving Email Feature

App Engine now supports incoming email in your applications. Read the official
documentation here. Your applications can now receive email and you can parse out the
email and determine any business logic that needs to be processed. This opens up a whole
new range of applications where you can fulfill requests and send information from your
application by allowing users to simply send an email from their favourite email client.
Think of it as a Instant Message itself that your application can receive and react to it. We

http://gaejexperiments.wordpress.com/2009/10/09/episode-3-using-the-gaej-email-service/
http://googleappengine.blogspot.com/2009/10/app-engine-sdk-126-released-with.html
http://gaejexperiments.wordpress.com/2009/09/22/google-app-engine-java-development-setup/
http://gaejexperiments.wordpress.com/2009/10/14/episode-4-building-a-dictionary-app-using-the-gaej-url-fetch-service/
http://gaejexperiments.wordpress.com/2009/10/29/episode-5-upgrading-to-google-app-engine-1-2-6/
http://code.google.com/appengine/docs/java/mail/receiving.html

Episode 6: Handling incoming Email in your application 54

had seen in an earlier Episode how through XMPP Support, we can write our own Agent
that can receive XMPP messages directly and respond to them. Now with version 1.2.6 of
the SDK, the same functionality has got extended to email too. And the best part about it

is the consistency with which Google has implemented it.

The steps to follow to receive an email is identical to the ones required to receive XMPP
messages:

1. Configure your application to receive incoming email by configuring the Mail Service
2. Write and configure a servlet to receive email

3. Once the application is deployed, anyone can send an email to
SomelD@YourApplicationld.appspotmail.com. SomelD is any id like test, admin,
support,etc. It is just an id. And YourApplicationld is the application id of your hosted
Google App Engine application.

Let us look at each of the above points in detail now. But before we begin, create a New
Google Web Application Project (If you wish you can continue to use an existing
project to add the incoming Email support, which is what I have done personally,
but the choice is yours) . Follow these steps to create a new project:

1. Either click on File —> New —> Other or press Ctrl-N to create a new project. Select
Google and then Web Application project. Alternately you could also click on the New
Web Application Project Toolbar icon as part of the Google Eclipse plugin.

2. In the New Web Application Project dialog, deselect the Use Google Web Toolkit
and give a name to your project. | have named mine GAEJExperiments. | suggest you
go with the same name so that things are consistent with the rest of the article, but I leave
that to you.

3. Click on Finish

This will generate the project and also create a sample Hello World Servlet for you. But
we will be writing our own Servlet.

Configuring the incoming Email Service

This is straightforward and all you need to do is add the following element to the
appengine-web.xml file. The appengine-web.xml file as you know is specific to the
Google Java Web Application project and is used for configuring certain services. You
need to configure the Incoming Email Service so that your application is enabled to
receive it, being one of them. It is found in the war\WEB-INF folder of your Web
Application Project. The XML fragment to add at the end but before the </appengine-
web-app> element

<inbound-services>
<service>mail</service>

http://gaejexperiments.wordpress.com/2009/09/25/gaej-xmpp-and-rolling-your-own-agent/

Episode 6: Handling incoming Email in your application 55

</inbound-services>

Configure and code a Java Servlet that will receive the
incoming Message

All Email messages to your application are delivered via POST to following URL path in
your application: /_ah/mail/ as per the Google AppEngine documentation. So you will
need to configure the servlet like the following snippet in the web.xml file, present in the
war\WEB-INF folder of your Web Application Project.

We need to add the <servlet/> and <servlet-mapping/> entry to the web.xml file. This
file is present in the WEB-INF folder of the project. The necessary fragment to be added
to your web.xml file are shown below. Please note that you can use your own namespace
and servlet class. Just modify it accordingly if you do so.

<servlet>

<servlet-name>emai lhandler</servlet-name>

<servlet-

class>com.gaejexperiments.email .GAEJReceiveEmailServlet</servlet-class>
</servlet>

<servlet-mapping>

<servlet-name>emai lhandler</servlet-name>
<url-pattern>/_ah/mail/*</url-pattern>

</servlet-mapping>

<security-constraint>
<web-resource-collection>
<url-pattern>/_ah/mail/*</url-pattern>
</web-resource-collection>
<auth-constraint>
<role-name>admin</role-name>
</auth-constraint>

</security-constraint>

In the above snippet, you will find the fixed URL path /_ah/mail/* configured as the
<url-pattern/>. And then | have a Java Servlet class

com.gaejexperiments.email. GAEJReceiveEmailServlet as the <servlet-class>. The
security constraint has been added so that in case anyone invokes your url directly, then
only Google Account authenticated users will be able to do that.

Now, all we have to do is write our Servlet. As mentioned, the incoming Email messages
will be POSTed to our Servlet, so we need a simple doPost(...) implemented in our
Servlet. The code is shown below:

package com.gaejexperiments.email;

import java.io.lOException;
import java.io. InputStream;

Episode 6: Handling incoming Email in your application 56

import java.util _Properties;
import java.util._logging.Level;
import java.util.logging.Logger;

import javax.mail .MessagingException;
import javax.mail _Multipart;

import javax.mail .Part;

import javax.mail.Session;

import javax.mail._internet._MimeMessage;
import javax.servlet.ServletException;
import javax.servlet.http.*;

@SuppressWarnings(*'serial’)

public class GAEJReceiveEmailServlet extends HttpServilet {
public static final Logger log =

Logger .getLogger (GAEJReceiveEmailServlet.class.getName());

@Override
public void doPost(HttpServletRequest req, HttpServletResponse resp)
throws ServletException, I10Exception {

try {

Properties props = new Properties();
Session session = Session.getDefaultlnstance(props, null);
MimeMessage message = new MimeMessage(session, reqg-.getlnputStream());

//Extract out the important fields from the Mime Message
String subject = message.getSubject();

_log.info(*"Got an email. Subject = "+ subject);

String contentType = message.getContentType();
_log-info(""Email Content Type : "+ contentType);

printParts(message);
//Parse out the Multiparts
//Perform business logic based on the email

catch (Exception ex) {

_log.-log(Level .WARNING, "Failure in receiving email : "+
ex.getMessage());

}

}

private static void printParts(Part p) throws I10Exception,
MessagingException {
Object o = p.getContent();

if (0o instanceof String) {
System.out.printIn(*'This is a String");
System.out.printIn((String)o);

else if (0o instanceof Multipart) {

Episode 6: Handling incoming Email in your application 57

System.out._printIn("'This is a Multipart™);
Multipart mp = (Multipart)o;

int count = mp.getCount();

for (inti1 = 0; 1 < count; i++) {
printParts(mp.getBodyPart(i));

}

}

else if (0 instanceof InputStream) {
System.out._printIn("'This is just an input stream™);
InputStream is = (InputStream)o;

intc;

while ((c = is.read()) !'= -1)
System.out.write(c);

}

}
b5

Let us discuss the main parts of the code:

1. We have a doPost() method that gets invoked by the Google App Engine when an
email is received.

2. In the doPost() method, we build out the email message (a instance of class
MimeMessage) using the javax.mail.* classes as shown below:

Properties props = new Properties();
Session session = Session.getDefaultlnstance(props, null);
MimeMessage message = new MimeMessage(session, reqg-getlnputStream());

3. We extract out key attributes from the Message like subject, content type, etc.

//Extract out the important fields from the Mime Message
String subject = message.getSubject();
_log.info(*"Got an email. Subject = "+ subject);

String contentType = message.getContentType();
_log.-info("Email Content Type : "+ contentType);

4. We have a utility method printParts(), that helps simply print out the contents of the
message. But you could explore the Java Mail API to parse out the multiparts as
required and then incorporate your business logic.

5. To help debug our Servlet, we have put in some log statements along with System Out
statements, which we shall look for to verify that the Application did receive email.

Finally, we have used the INFO level to log if the message was sent out successfully or
not, so we will have the change the logging level by modified the logging.properties file
present in the war\WEB-INF folder. The necessary line after modification is shown
below:

http://java.sun.com/products/javamail/javadocs/index.html

Episode 6: Handling incoming Email in your application 58

Set the default logging level for all loggers to INFO
-level = INFO

Deploying our application

To deploy the application, you will need to first create your Application ID. The
Application Identifier can be created by logging in at http://appengine.google.com with
your Google Account. You will see a list of application identifiers already registered
under your account (or none if you are just getting started). To create a new Application,
click on the Create Application button and provide the Application Identifier as
requested. Please note this name down since you will be using it for deployment.

For e.g. | have registered an application identifier named gaejexperiments.
To deploy the application, follow these steps (they should be familiar to you now):

1. Click on the Deploy Icon in the Toolbar.

2. Inthe Deploy dialog, provide your Email and Password. Do not click on Deploy
button yet.

3. Click on the App Engine Project settings link. This will lead you to a dialog,
where you need to enter your Application ID [For e.g. my Application Identifier
gaejexperiments]

4. Click on OK. You will be lead back to the previous screen, where you can click
on the Deploy button. This will start deploying your application to the GAEJ
cloud. You should see several messages in the Console window as the application
is being deployed.

5. Finally, you should see the message “Deployment completed successfully”.

Testing our Application

To test our application, send an email from any mail client to an address within your
application. As explained below, the email address to be used is shown below:

SomelD@YourApplicationld.appspotmail.com

For e.g. my Application Id is gaejexperiments, so | can send email to any of the
following:

o test@gaejexperiments.appspotmail.com
e userl@gaejexperiments.appspotmail.com
e andsoon...

Once the email has been sent successfully from a Google Mail Account or Yahoo Mail or
Outlook/Thunderbird, etc — you can use the App Engine console to verify if your
application received the email or not. To do that, perform the following steps:

http://appengine.google.com/

Episode 6: Handling incoming Email in your application 59

=

Go to http://appengine.google.com and log in with your account.

2. You will see a list of applications registered. Click on the application that you just
deployed. In my case, it is gaejexperiments.

3. When you click on a particular application, you will be taken to the Dashboard
for that application, which contains a wealth of information around the requests,
quotas, logs, versions, etc. This will be a subject of a future episode but for now,
it is sufficient to say that you can come over here to monitor the health of your
application and also to analyze what is going on.

4. Click on the Logs link as shown in the screenshot

below:
‘:_-‘:L‘.I' '.'_':l": app engine romin.k.irank@gmail.com | by Account | Help | Ssgn out

a Sitwi A0 Applicaios
gasjexperiments = Version; 2 S AR Agplicalions

Charts g
Ilain .
Dashiroard Requests/Second = all 24hr 12 Ghr
Cunta Details
Clogs >
R T
Gion Jobg
[ask Qugisss

Diatastone
Indexas

'lili Wiewyar

=1 3lELI0e

5. This will display the application log. And all your application log statements that
you code using the Logger class can be visible here.

6. By default, the severity level is set at ERROR and we can change that to DEBUG,
the lowest level and you should be able your log statements that had the log level
of INFO. This was the log level at which we had logged statements like Received
an Email, etc in our Java Servlet, so that is what we need to check for.

7. If you see the statements, it means that the message has been received. Shown
below is a screen shot of the log for a message that |

sent.
Main Files Logs
[Cashtearg Mimmaim Seanty Desug = & Cstians
Slisokp Diefally Tip: Cick a log Ine o show or hide &z detaih
e 144
eran Jobe = 1030 10 32PM 26 481 | ahdmailiesifigaejexperimens.appspoimail.com 20 17ms Jope_ms Skb
M-"—' 0.1:,0.30 - - 3 Qes/d00R:33:33 48 Q700 "FOST ah/mailicestiganinxpezizects . appepotaadl .cem HITR/L.1™ 30 Q@ - -
Catasioe MRS ERpE AN AT o
Ingeute I 10-30 10:320M 46 495
Dt Wiswee com gasjaxperisests esei] SAFTAscaivefneiidscviet Ssfost: Gob an meail, Subject = Test Foail
SR W 1230 103200 45 436
co=.ganjexperioescy. emmil GAEIisceivefneilfecvies dSofoms: Fasil Contens Type @ cexe/plasn: charset=fSo-Ss8p-1

B o) 10-95004 48 406

gaEleaperimsaca)/y, 35741422042 56434 TH] L 0d0UE)

http://gaejexperiments.files.wordpress.com/2009/10/console1.png
http://gaejexperiments.files.wordpress.com/2009/10/console2.png
http://appengine.google.com/

Episode 6: Handling incoming Email in your application 60

Once this mechanism is in place, it means that your application has been correctly setup
and deployed for receiving email messages. You can now build in business logic on what
you need to do when an email is received.

Hope you had a good time reading this episode. The next episode I plan to extend an
existing episode in which we built an XMPP Bot and deployed it on the Google App
Engine. | plan to extend the bot to support the collaboration tool Google Wave, so that
your bot can participate in a Wave conversation too. Till then, happy GAEJ’ing!

http://wave.google.com/

Episode 7: Writing your First Google Wave Robot 61

Episode 7: Writing your First Google Wave Robot

Welcome to Episode 7 of this series. Hope that the series has been interesting for you so
far. In this episode, we plan to jump onto the Google Wave bandwagon. Google Wave, as
you must have heard is a collaborative messaging platform from Google. A Wave is a
collaboration between several participants (humans and non-humans) using threaded
conversations/documents/gadgets to achieve their task. The task could be as simple as
chatting among themselves to figure out where to dine tonight to as complex as achieving
a Return Order process between a purchaser and seller.

I will not delve into the specifics of Google Wave and will assume that you have a high
level idea of what it is. In fact, a great online book has just been released that covers
Google Wave in depth. I strongly recommend you to read it if you want to look into
Google Wave in detail. The book is named The Complete Guide to Google Wave and
you can read it here.

What does this episode cover?

In this episode, we are going to look at how you can write a Google Wave Robot using
the Google plugin in Eclipse. We will then deploy it and host this robot in the Google
App Engine cloud. This Robot is then live and can be added to any Wave and participate
in the conversation.

It helps to see the final result before we start out. Even if you do not understand whats
going on, just bear with me. So here is the screenshot:

http://wave.google.com/
http://completewaveguide.com/

Episode 7: Writing your First Google Wave Robot 62

G 00 3 IE wave BEEIE Contacts Inhoy

e iew

Hello GAEJ Robat

8. -

b Reply | [® Playback | [E] archive B mute | & Spam T Read | 5 Unread

Hello GAEJ Robot 9:38 am -

GAEJ: Blip |1d : b+EdpL3kY QB |, Blip Creator 938 am -
£ romin. k. irani@googlewave. corn
You typed ;: Hello GAEJ Robot

g

GAE.: 937 am =
&5 Hil Your GAEJExpetiments Bot is waiting for your command...Hil Your
GAEJExperiments Bot is waiting for your command. ..

Tags; |+ | Files =

Let us dissect this screen and in the process, | can hopefully explain to you some Google
Wave terminology in a straightforward manner without too many details. The main
points are:

1. What you see in the screen above is a Google Wave that me (the person with the photo
created). A Wave is a collaboration between one or more participants (human or Robots).

2. Since we need participants to make it meaningful, you can add one or more of them.
All you need to do is click the + sign that you see on the top. And you can add one or
more participants who are also signed up for Wave. In this case, my Robot GAEJ
Application is hosted at http://gaejrobot.appspot.com and so | can add
gaejrobot@appspot.com as a participant.

3. On adding the Robot participant, Google wave system pulls up its profile (image, etc)
and adds it as a participant in the Wave that | created.

http://gaejexperiments.files.wordpress.com/2009/11/ep7-17.png

Episode 7: Writing your First Google Wave Robot 63

4. The Robot can receive events and it can respond to them. We shall see how to write
them later (source code!!), but at this point it is enough to understand that the Robot can
choose what events to listen to as the Wave collaboration happens and it can then react to
them. So in the case of my GAEJ Robot, | have specified that | am interested in knowing
when participants come and leave the Wave and when someone has submitted a message.

5. So you can see that the GAEJ Robot was notified when it was added to the Wave, so in
response to that it printed out the message “Hi! Your GAEJExperiments Bot.....” at the
bottom. Similarly, when I finished typing the message (Hello GAEJ Robot), the GAEJ
Robot got notified. It then took the message and along with some metadata like ID and
Creator Name, it simpy echoed back what | typed.

Hope this makes things clear. But a few more terms first : Wave, Wavelet and Blip. Let
me keep it simple. In the above example, the Wave was the entire container. A Wave
consists of one or more Wavelets. A Wavelet can be thought of as a threaded
conversation that can go on within the wave (both public and private). And each Wavelet
consists of one or more messages known as a Blip. A Blip is the actual message that was
typed and submitted by the user. So when I typed “Hello GAEJ Robot” above, it was a
Blip.

I have simplified things a bit here but even if things are not clear at this point, do not
worry. Once you get your code working, things will fall in place.

A final note above Google Wave Extensions. Extensions are the mechanism by which
you can extend Google Wave by adding your own creations. Extensions are of two types
: Gadgets and Robots. Gadgets are like mini-applications that run within the Google
Wave client. They can be typically thought of as a Ul which several participants can
share at the same time. A Robot is a full blown participant in the Wave. It can be aware
of most things happening in the Wave by subscribing to Events. It also has a lot of
potential to modify things in the Wave like messages, etc. This article focuses on writing
a Robot. If you are interested in a good summary of Google Wave Extensions and some
key differences between a Gadget and a Robot, read it here.

OK, so enough of theory. Let us get down to coding. If you are new to developing with
the Google Plugin for Eclipse, please read the earlier episodes to setup your environment
(Episode 1 and Episode 5)

Create a New Project

We need to create a New Project first. Follow the steps below:

1. Either click on File —> New —> Other or press Ctrl-N to create a new project. Select
Google and then Web Application project. Alternately you could also click on the New
Web Application Project Toolbar icon as part of the Google Eclipse plugin.

2. In the New Web Application Project dialog, deselect the Use Google Web Toolkit

http://code.google.com/apis/wave/extensions/
http://gaejexperiments.wordpress.com/2009/09/22/google-app-engine-java-development-setup/
http://gaejexperiments.wordpress.com/2009/10/29/episode-5-upgrading-to-google-app-engine-1-2-6/

Episode 7: Writing your First Google Wave Robot 64

and give a name to your project. I have named mine MyFirstGoogleWaveRobot and |
suggest you go with the same name so that things are consistent with the rest of the
article. The Screenshot is shown below:

LFMew Weh Application Project

Create a Web Application Project
Create a'»eb Application project in the waorkspace or in an external location

kyFirstGooglets’ aveR obot

com.Jagjerperiments. waverabot

3. Click on Finish. This will generate the project and also create a sample Hello World
Servlet for you. But we will be writing our own Servlet. So | suggest that you can delete
the Servlet Java class and the mappings made in the web.xml or you can leave it for
now since we are going to write our own.

The directory structure for your project should now look like this.

http://gaejexperiments.files.wordpress.com/2009/11/ep7-1.png

Episode 7: Writing your First Google Wave Robot 65

E'a. App Engine SDE [&pp Engine [1]-1.2.E]
E-.,. JRE Swztern Library (el 5.0_05]

- WEB-INF

= b

----- ﬂ appengine-api-1.0-edk-1.2.6.jar

----- 4] appengine-apilabs-1.2.6 jar

----- ﬂ datarucleus-appengine-1.0.3.jar
----- ﬂ datanucleus-core-1.7.5.ar

----- ﬂ datanucleus-ipa-1.1.5.jar

----- ﬂ geronimo-pa_3.0_spec-1.1.7.jar
----- ﬂ geronirmo-ta_1.1_spec-1.1.1.jar
----- 4] jdo2-api-2 Feb.jar

----- %| appengine-web.=ml

----- logging. properties

----- K| web.sml

----- [Z] index.htrml

Adding Google Wave Robot JAR files to your Project
Path

Since we are going to be writing a Wave Robot, we need some additional files on the
client side. These additional files (JAR files) are required for the additional Wave API’s
and also for deployment in your WEB-INF\lib folder, so that they are correctly deployed
and available to the run-time engine. These JAR files do not ship along with the Google
Eclipse plugin, so you will need to download them for a website. The Google code
website for the JAR files is:

http://code.google.com/p/wave-robot-java-client/downloads/list

The web page when you navigate to the above URL is shown below:

http://gaejexperiments.files.wordpress.com/2009/11/ep7-2.png
http://code.google.com/p/wave-robot-java-client/downloads/list

Episode 7: Writing your First Google Wave Robot 66

l‘ v wave-robot-java-client
Wawve Robot Java Client Librans

Project Home Downloads Source
Search | Current downloads j for | Searchl
Filename ~ Summary + Labels ™

wave-robot-api-20030315. jar Wave Robot Java Client Library Featured

oauth-20090617 jar Oduth jar
[SOnrpe.jar |sanrpc.jar
[sOn.jar |san.jar

Download all the above files to your machine. Once you have downloaded the files,
follow these steps to setup your Project Build Path and runtime correctly.

1. Copy all the 4 JAR files to the WEB-INF\lib folder of your Eclipse Project. After
copying you should see the files as shown in the project hierarchy below:

E-= war

E- (= WEB-INF
B b
""" ﬂ appengine-api-1.0-edk-1.2.6.jar
""" ﬂ appengine-api-labs-1.2. 6. jar
""" ﬂ datanucleuz-appengine-1.0.3.jar
""" ﬂ datanucleusz-core-1.1.5jar
""" ﬂ datanucleus-ipa-1.1.5ar
""" ﬂ geronimo-pa_3.0_spec-1.1.1.jar
""" ﬂ geronimo-ta_1.1_zpec-1.1.1.jar
----- |&l] jdoz-api-2. 3-ebjar

.....) jzon.jar
..... ﬂ | fuly]julsH iar
..... ﬂ A0030617.|

""" |X| appengine-web,sml
""" logging. properties
""" K web xml

2. Right-click on the Project in the Project Hierarchy. Select Properties and then Java
Build Path. Click on Add JARs and then select the 4 JAR files from your Project WEB-
INF\lib folder as shown below and click on OK.

http://gaejexperiments.files.wordpress.com/2009/11/ep7-6.png
http://gaejexperiments.files.wordpress.com/2009/11/ep7-4.png

Episode 7: Writing your First Google Wave Robot 67

{:Z- JAR Selection M=

tepe filker best

= =% MyFirstGoogle'w aveFobot
[E:- .zettings
[E:- sfc
22 war
02 wave
== WEBANF
F-C= classes
E-E lib
ﬂ appengine-api-1.0-zdk-1.2.6.jar
appengine-api-labs-1.2.6.jar
ijl datanucleuz-appengine-1.0.3 jar
ﬂ datanucleus-core-1.7. 5 jar
ﬂ datanucleus-pa-1.1.5.ar

ﬂ geronimo-jpa_3.0_spec-1.1.1 jar

ﬂ geronimo-ita_1.1_zpec-1.1.1.jar
& jdo2-api-2. 3-eb.jar

wave-robot-api-20090916.jar

m appengine-web, sml
logging. properties
m web, wml

indess. html

E] clazzpath

3. Your Project Build Path should like the screenshot below.

http://gaejexperiments.files.wordpress.com/2009/11/ep7-5.png

Episode 7: Writing your First Google Wave Robot 68

rroperties for MyFirstGooglew aveRobot
Resouice o - —
Buidess |# Souce | 1= Projcts = Libvasies | . Dpdar and Expont |
B Bocde JAsFls ared class fokders on the buid palh
Java Build Fath — e—
« Java Code Siyle + e jeanjar - MyFistGooglehs sveR obotAwarAWE BANF AL I%H
& Java Comples H ke jporepe. e - MpFrsGoogiew aveR obol /v AWEB-INF it d s, I
+ Java Ediloe e pzuth- 2009061 7 jar - MyFiziGoogle’s aveR obolAsaWEE-INF D Extenal =
Javadoe Location s wave-obotb-api- 2008051 B jar - MyFirstGoogle aveR obol/ warAWEB-IMF/ib dd Vaiable . I
Fiomct Rsterencss H-B App Engine SDK [App Engine [1) - 1. 28]
Hetactorng Hitory BB JRE System Libeary [jel.6.0_0E] Add Libugey.. I
FAuniT ebug Settings
% Task Repashang Add Clacs Folder . I
— Taak Tas #cd Extemal Class Foider . |
= Walidation
Wik T
Edt I
Bemave I
141 f I
7) ok Canced

Click on OK to proceed. This completes your Build Path setup with the Google Wave
Robot JAR files.

Writing the Google Wave Robot Servlet :
MyFirstGoogleWaveRobot.java

Let us first create our Robot Java class. The steps are straightforward and given below.
All we need to do is write our class that extends the
com.google.wave.api.AbstractRobotServlet class and provide an implementation for
the processEvents method.

Follow these steps:
1. Create a new Java class within the same package. The New Java Class dialog is shown

below. | have named the class MyFirstGoogleWaveRobot as shown below. Click on the
Browse button to select a Super Class.

http://gaejexperiments.files.wordpress.com/2009/11/ep7-51.png

Episode 7: Writing your First Google Wave Robot 69

{¥New Java Class
Java Class

Create a new Java class.

 yFirztG ooglets' aveR obot/ sz
com. gagjexpenments. waverobot

b pFirstG oogleiwd aveR obot

o private 0 protected

—

& e

<717

1

2. In the Superclass Selection dialog shown below, type the word AbstractRobot (some
part of it is also OK as the screenshot shows below) in the Choose a type field as shown.
This will bring up the correct Matching items i.e.
com.google.wave.api.AbstractRobotServlet. Click on OK

http://gaejexperiments.files.wordpress.com/2009/11/ep7-7.png

Episode 7: Writing your First Google Wave Robot 70

£} superclass Selection _ O] x|

ShstractRobo

2" AbstractR obot
ICH AbstractR obotServiet - com. qoogle. wave. api

This will generate the code as shown below in your Eclipse IDE.

package com.gasjexperiments.vavercbot;
Q;jmpnrt com. google. wave.api.ibstractRobotServlen;[]

public class HyFirstGoogleVaveRobot extends AbstractRobotServiet |

< Goverride
S public void processEvents (RobotMeasageBundle argl) |
r A TODD Auto-gensrated method stub
¥
)

Simply overwrite it with the code shown below:

package com.gaejexperiments.waverobot;

import com.google.wave.api .AbstractRobotServliet;

http://gaejexperiments.files.wordpress.com/2009/11/ep7-8.png
http://gaejexperiments.files.wordpress.com/2009/11/ep7-9.png

Episode 7: Writing your First Google Wave Robot 71

import com.google._wave.api -Blip;

import com.google.wave.api .Event;

import com.google.wave.api.EventType;

import com.google.wave.api .RobotMessageBundle;
import com.google._wave.api -TextView;

import com.google_wave.api -Wavelet;

public class MyFirstGoogleWaveRobot extends AbstractRobotServilet {

@Ooverride

public void processEvents(RobotMessageBundle bundle) {

Wavelet wavelet = bundle.getWavelet();

if (bundle.wasSelfAdded()) {

Blip blip = wavelet._appendBlip();

TextView textView = blip.getDocument();

textView.append("'Hi! Your GAEJExperiments Bot is waiting for your
command...");

}

for (Event e: bundle.getEvents()) {

if (e.getType() == EventType.BLIP_SUBMITTED) {
//Get the Blip that was submitted

Blip blip = e.getBlip();

//Extract out MetaData information like 1D and the creator of the Blip
String strBlipMetaData = "Blip Id : "+ blip.getBlipld() + ™ , "+
"Blip Creator : "+ blip.getCreator();

//Extract out the text that was entered in the blip
String strBlipText = "You typed : " + blip.getDocument().getText();

//Echo that out by creating a child within the submitted blip
blip.createChild() -getDocument() -append(strBlipMetaData + "\r\n" +
strBlipText);

}

}

}
}

Let us discuss the main points of the source code:
1. A Robot class needs to extend the com.google.wave.api.AbstractRobotServlet class

2. The only method that you need to implement to get going is the processEvents()
method as shown above in the code. In this method, all we need to do is process the
Events that we are interested in and take some action.

3. What we want our Robot to do is to announce itself to everyone when it is added to the
Wave. This event is also pumped into the processEvents method but the API provides us
a nice convenient method to detect if we have been added to the Wave via the
bundle.wasSelfAdded() method. The code snippet is shown below:

Episode 7: Writing your First Google Wave Robot 72

public void processEvents(RobotMessageBundle bundle) {

Wavelet wavelet = bundle.getWavelet();

if (bundle.wasSelfAdded()) {

Blip blip = wavelet.appendBlip();

TextView textView = blip.getDocument();

textView.append("'Hi! Your GAEJExperiments Bot is waiting for your
command...");

}

// .. _Rest of processEvents method

b

So the first thing we are doing is determining if we (i.e. the Robot has been added to the
Wave. If yes, we need to add a message to the Wavelet (Threaded Conversation).
Remember a message is known as a Blip. So we append a new Blip to the current
wavelet. And now we need to set the message text for the Blip. To do that, we need to get
the handle to a TextView for the Blip and then we append our Text to it. As simple as
that.

4. Then we have the main Events loop in which we navigate through the events that are
pumped into the loop by the Google Wave system. The code snippet is shown below:

for (Event e: bundle.getEvents()) {

if (e.getType() == EventType.BLIP_SUBMITTED) {
//Get the Blip that was submitted

Blip blip = e.getBlip();

//Extract out MetaData information like ID and the creator of the Blip
String strBlipMetaData = "Blip Id : "+ blip.getBlipld() + ™ , "+ "Blip
Creator : "+ blip.getCreator();

//Extract out the text that was entered in the blip
String strBlipText = "You typed : "+ blip.getDocument().getText();

//Echo that out by creating a child within the submitted blip
blip.createChild() .getDocument() -append(strBlipMetaData + "\r\n" +
strBlipText);

+
+

If the EventType is BLIP_SUBMITTED i.e. someone has submitted a message, then we
first get the handle to the Blip. The Blip is not just the Text but a lot of other useful
metadata. | simply demonstrate here two kinds of information about the blip, a Blipld and
a Blip Creator. The blip creator is the name of the participant that created this blip. Then
as we saw, we get to the Text of the Blip, by getting a handle on the getDocument() and
then the getText() method. This gives us the text that was typed by the creator of the Blip.
Finally, I insert a child Blip inside the Blip so that it looks like a response to that blip
within the Google Wave. The response is nothing but a text appended with the metadata
extracted and the echoing of the text that the creator typed.

Episode 7: Writing your First Google Wave Robot 73

Using this boiler plate of code, you can do your own thing. You could interpret
commands given in a Blip by anyone and execute them and append the responses to their
Blip. You could look up data on Amazon or any other web site if given the ISBN. The
possibilities are limitless if you wish to modify the above code and make your Robot do
something else.

That is all to writing a Robot but we still have some configuration to do to let Google
Wave know that we have a Robot running in our GAEJ Application. And we will do that
through the standard servlet entries in the web.xml file along with new XML
configuration file that you need for the Robot called the capabilities.xml file.

Configuring the Robot Servlet

We need to add the Robot Servlet <servlet/> and <servlet-mapping/> entry to the
web.xml file. This file is present in the WEB-INF folder of the project. The necessary
fragment to be added to your web.xml file are shown below.

<servlet>

<servlet-name>MyFirstGoogleWaveRobot</servlet-name>

<servlet-
class>com.gaejexperiments.waverobot.MyFirstGoogleWaveRobot</servlet-
class>

</servilet>

<servlet-mapping>

<servlet-name>MyFirstGoogleWaveRobot</servlet-name>

<url-pattern>/_wave/robot/jsonrpc</url-pattern>

</servlet-mapping>

In the above fragment, you will note that url-pattern /_wave/robot/jsonrpc has to be
mapped to the Robot Servlet that you have written. This is because the Google Wave
system will invoke this url to communicate with your Robot using its protocol.

Creating the Robot capabilities.xml files

We need an additional file to describe the capabilities of the Robot that we have written.
This file is called the capabilities.xml and it needs to reside in a certain location. You
need to create a _wave directory inside of the war directory of your project. The location
of this file is shown below under the war/_wave directory.

Episode 7: Writing your First Google Wave Robot 74

|é|"'7, j'l' buFirstGooglety aveR obot
Emﬁ?sm
Er-E com, gagjexpenment s, waverobok
: 'T_I kyFirstGooglets aveR obot java
= METAINF
- logd|. properties
~Ei App Engine SDK [App Engine [1] - 1.2.6]
- JRE Swztem Library [re1.5.0_05]
B Referenced Libranes
22 war
Ellcr _wave
----- K| capabilities.=ml
b &l myimage. jpg
== WEB-IMF
- lib
----- X appenagine-web, sl
----- logging. properties
o] woeh sl

----- Z| indesx.html

You will need to create the _wave directory and create the capabilities.xml file over
there. The capabilities file shown below is pretty straightforward. Two items are of
interest. One is the a <capability> element for each EVENT that you wish your Robot
get notified about. If you go back to the Source code of our Robot, you will notice that
we were primarily interested in two events:

1. BLIP_SUBMITTED : Take a look at the source code. You will find that we checked
for this event in our Events Loop and once a Blip (Message) was available, we extracted
information and sent back a child Blip.

2. WAVELET_PARTICIPANTS_CHANGED: Take a look at the source code. This
event was fired and we used a convenience method called bundle.wasSelfAdded() to find
if we were added. In fact, you can put in an if else clause and catch this event in the
Events loop too to get notified whenever anyone joins or leaves the Wave.

Now that it is clear that we need these two events, we subscribe to them by specifying
the events in the capabilities.xml document. Any other events (Look at the
com.google.wave.api.EventType class) that you are interested in should be mentioned
here, otherwise your robot will not get notified about them. The other element is the
<version> element. If you change any capabilities in your robot, then it is recommended
that before you deploy, you change the version value over here, so that Google Wave can
detect that there is a newer version and hence it can then query for your modified
capabilities if any.

<?xml version="1.0" encoding=""utf-8"?>
<w:robot xmIns:w="http://wave.google.com/extensions/robots/1.0">
<w:capabilities>

http://gaejexperiments.files.wordpress.com/2009/11/ep7-10.png
http://wave.google.com/extensions/robots/1.0

Episode 7: Writing your First Google Wave Robot 75

<w:capability name="WAVELET PARTICIPANTS_ CHANGED'" content=""true" />
<w:capability name="BLIP_SUBMITTED" content=""true" />
</w:capabilities>

<w:version>1</w:version>

</w:robot>

Writing our Robot Profile Servlet (not required but
nice)

This is not a required step but it would be good practice to do so to make your Robot look
more professional. A Profile Servlet is used to tell the following about your Robot:

1. A Name for your Robot

2. A custom image for your Robot

3. A profile page for your Robot (a URL)

If you provide these, then the Google Wave client is able to retrieve them and set it for
your Robot when it is added as a participant. This makes the Robot look more
professional.

This profile information needs to be provided by you by writing a Profile Servlet. The
Profile Servlet is nothing but extending the com.google.wave.api.ProfileServlet class and
providing simple implementations for the overwritten methods.

Follow these steps to write the Profile Servlet:

1. Create a new Java class within the same package. The New Java Class dialog is shown

below. | have named the class GAEJRobotProfileServlet as shown below. Click on the
Browse button to select a Super Class.

Episode 7: Writing your First Google Wave Robot 76

{¥New Java Class
Java Class

Create a new Java class.

 yFirztG ooglets' aveR obot/ sz
com. gagjexpenments. waverobot

GAEJRobatPraofiles ervet

Ol - (01 priate

||] | r Bt
fivatorgObiect

—

& e

<717

1

2. In the Superclass Selection dialog shown below, type the word ProfileServlet in the
Choose a type field as shown. This will bring up the correct Matching items i.e.
com.google.wave.api.ProfileServlet class. Click on OK.

http://gaejexperiments.files.wordpress.com/2009/11/ep7-18.png

Episode 7: Writing your First Google Wave Robot 77

L¥superclass Selection

Chooze a type: -

IF'n:ufiIeS ervlel

Matching items:

& ProfileServlet - com.google. wave. api

1| |]

| com.google. wave. api - MyFirstGoogle'w’ave. . WEB-IMF libAwave-robot-api- 2003031 6. jar |

@:J | [k I Cancel |

3. This will generate a GAEJRobotProfileServlet.java file.

The simplest way to generate the stubs for the required methods would be to go to
Source —> Override/Implement Methods. This will bring up the dialog box as shown
below and you only need to select the 3 methods to override as shown:

http://gaejexperiments.files.wordpress.com/2009/11/ep7-19.png

Episode 7: Writing your First Google Wave Robot

LFoverride,/ Implement Methods

Select methods to overide or implement: | = Select Al

I

Dezelect Al
------ O < doGetHtpServietRequest, HitpServistResponse]

------ O < doPostHitpServietRequest, HitpServletR ezponze]
------ O @ getCustomProfile(Sting)

------ @ getRobotdyatarlrl])

------ @ getRobaotM ame()

------ @ getRobotProfilePagell)

=0 (®* HtpServlet

O @* GenericServet

#-[1© Object

Inzertion point:

I Last member j

[T Generate method comments

The format of the method stubs may be configured on the Code Templates preference page.

1 3of 30 selected.

Iﬁj} k. I Cancel

Click on OK. This will generate the stubs, which you can then overwrite with the code
shown below. The code is easy to understand, all we are doing is providing values for the

Name, Avatar(Image) and the Profile Page URL. Note that for the Avatar, we are

providing a file myimage.jpg present in the WAR/_wave folder. You will need to

copy an appropriate image file for yourself and make sure that it is physically
copied to the folder locally in your Eclipse project before you deploy your

application. You should also replace the word gaejerobot in the source code below with

your Application ID.

package com.gaejexperiments.waverobot;
import com.google.wave.api.ProfileServiet;
public class GAEJRobotProfileServlet extends ProfileServilet {

@Override
public String getRobotAvatarUrl() {
return ""http://gaejrobot.appspot.com/ _wave/myimage. jpg";

b

http://gaejexperiments.files.wordpress.com/2009/11/ep7-14.png
http://gaejexperiments.files.wordpress.com/2009/11/ep7-14.png
http://gaejrobot.appspot.com/_wave/myimage.jpg

Episode 7: Writing your First Google Wave Robot 79

@0verride
public String getRobotName() {
return "GAEJ Robot";

}

@0override

public String getRobotProfilePageUrl() {
return ""http://gaejrobot.appspot.com™;

}

b

Configuring the Profile Servlet

We need to add the Profile Servlet <servlet/> and <servlet-mapping/> entry to the
web.xml file. This file is present in the WEB-INF folder of the project. The necessary
fragment to be added to your web.xml file are shown below.

<servlet-name>GAEJRobotProfileServlet</servlet-name>

<servlet-
class>com.gaejexperiments.waverobot.GAEJRobotProfileServlet</servilet-
class>

</servlet>

<servlet-mapping>

<servlet-name>GAEJRobotProfileServlet</servlet-name>

<url-pattern>/_wave/robot/profile</url-pattern>

</servlet-mapping>

In the above fragment, you will note that url-pattern /_wave/robot/profile has to be
mapped to the Profile Servlet that you have written. This is because the Google Wave
system will invoke this url to get hold of your profile.

Deploying the Application

To deploy the application, you will need to first create your Application ID. The
Application Identifier can be created by logging in at http://appengine.google.com with
your Google Account. You will see a list of application identifiers already registered
under your account (or none if you are just getting started). To create a new Application,
click on the Create Application button and provide the Application Identifier as
requested. Please note this name down since you will be using it for deployment.

For e.g. | have registered an application identifier named gaejrobot.
To deploy the application, follow these steps (they should be familiar to you now):

1. Click on the Deploy Icon in the Toolbar.

http://gaejrobot.appspot.com/
http://appengine.google.com/

Episode 7: Writing your First Google Wave Robot 80

2. In the Deploy dialog, provide your Email and Password. Do not click on Deploy
button yet.

3. Click on the App Engine Project settings link. This will lead you to a dialog,
where you need to enter your Application ID [For e.g. my Application Identifier
gaejrobot]

4. Click on OK. You will be lead back to the previous screen, where you can click
on the Deploy button. This will start deploying your application to the GAEJ
cloud. You should see several messages in the Console window as the application
is being deployed.

5. Finally, you should see the message “Deployment completed successfully”.

GAEJ Robot in Action

Your application is going to be available at the http://yourapplicationid.appspot.com. In
my case, the application is available at http://gaejrobot.appspot.com.

You can test for the presence of your robot capabilities file by simply typing in the
following:

http://yourapplicationid.appspot.com/_wave/capabilities.xml [Replace
yourapplicationid with the Application ID that you have]

For e.g. when I navigate to the following url
(http://gaejrobot.appspot.com/_wave/capabilities.xml) for my robot application, | get the
capabilities xml as shown below, which means that the robot is ready and serving if all is
right.

<w:robot>

<w:capabilities>

<w:capability name="WAVELET PARTICIPANTS CHANGED'" content=""true"/>
<w:capability name="BLIP_SUBMITTED" content=""true"/>
</w:capabilities>

<w:version>l1</w:version>

</w:robot>

To test out the Robot, you need to launch the Google Wave client and login in with your
account by going to http://wave.google.com. On successful login, you will be inside the
Wave client from where you can create a new wave by clicking on the New Wave link as
shown below:

http://gaejrobot.appspot.com/_wave/capabilities.xml
http://wave.google.com/

Episode 7: Writing your First Google Wave Robot 81

Google wave (TN EIETIEEE) Romin | Terms | Priacy | Hela

e

Hew Wave

When you do that, currently you are the only participant (myself) as shown in the screen
below:

") Romin (1) - Google Wave - Mozilla Firefox

U'J Bomin [1] - Google Wave

Google wave [EZEES

prav iew

2

B 7 US 1T- F Ab T Hi- =

e

» Link & G+ $b- 000 -
903 am ~ |

il
i
e
i
Ll

. Draft Cancel
Tags: ':E:J

h

Click on the + sign next to your icon and you can add one or more participants as shown
below:

http://gaejexperiments.files.wordpress.com/2009/11/ep7-11.png
http://gaejexperiments.files.wordpress.com/2009/11/ep7-12.png

Episode 7: Writing your First Google Wave Robot 82

?)Romin (1) - Google Wave - Mozilla Firefox

File Edit “iew Higtary Bookmarks Tool: Help

j .uJ. Romin [1]) Euugle Wave ﬁ

Add participants

(gaejroboti@appspot. com|

gagjrobot@@appspot.com is not one of
your contacts. Would you like to add
this address?

Add to contacts

Il
i
i
i

=. Lk & G+ - 008 |-
9:03 am - i

I¥ Crait | Done | Cancel

Files -

NOTE : Your Google Wave Robot is going to be available at
<YOURAPPLICATIONID>@appspot.com , hence | have added
gaejrobot@appspot.com as that was my application id. But you can replace it with your
application id.

If all goes well, you will see your Robot added as a participant (with the icon and all,
since the Profile Servlet is invoked behind the scenes by the Google Wave system). Since
the Robot got added, it received a WAVELET_SELF_ADDED Event and since we
had coded our Robot Servlet to receive that event and print out the greeting
message, you see the message saying “Hi! Your GAEJExperiments Bot"”.

http://gaejexperiments.files.wordpress.com/2009/11/ep7-13.png

Episode 7: Writing your First Google Wave Robot 83

Gﬂc)gle wave N avigation Contacts Inbox

Eray e

B 7 UST- F-Ab T HI- i= E & =- Lk & G+ fo- i @ |-
937 am - i
| v
@
FDraﬂ|DnneI Cancel
GAE.J: 9:37 am -

0 Hil Your GAEJExperiments Bot is waiting for your command. .. Hil Yaour
GAEJExperiments Bot is waiting for your cormmand. ..

Tags: |+ | Files = | |

Next | start typing a message “Hello GAEJ Robot” as shown below. But note that | have
still not pressed the Done button. Till the Done button is pressed, the
BLIP_SUBMITTED is not fired.

http://gaejexperiments.files.wordpress.com/2009/11/ep7-15.png

Episode 7: Writing your First Google Wave Robot 84

Goo q le wave REUEE: Contacts

Hello GAEJ Fobot

2. -

B I U & 1T- F+ Ab F Hi- i=

I[[
il
I[]

=. Lk & G+ Jo- 000 9 |-
Hello GAEJ Robot 9:38 am v |-

{

[T Crait | Done

GAEJ: 237 am -
&5 Hil Your GAEJExperiments Bot is waiting for your command. .. Hil ¥ our
GAEJExperiments Bot is waiting for your command. ..

Tags: + Files =

Once I click on the Done button, the BLIP_SUBMITTED event is fired and our Robot
Servlet gets the event. On receiving the event, it simply prints out some metadata and
echoes back the message

That is all there is to writing a Google Wave Robot. The example here is not useful as
such but the intent of the article is to make sure you get your Robot running and have the
right setup in place. Several examples are available over the web in which talented
programmers are writing Robots that do clever stuff. Just look around and get inspired.

Going back in Time

In Episode 2 of this series, we discussed how to write a XMPP Bot that you could add as
a friend in XMPP Chat clients like Google Talk, Spark, etc. That bot is not ready to be
added to a Google Wave since it does not implement the end-points that are discussed
here i.e. /_wave/robot/jsonrpc, etc. So all you will need to do is to follow the steps
outlined here and provide these Servlet implementations along with the end-points and

http://gaejexperiments.files.wordpress.com/2009/11/ep7-16.png
http://gaejexperiments.wordpress.com/2009/09/25/gaej-xmpp-and-rolling-your-own-agent/

Episode 7: Writing your First Google Wave Robot 85

capabilities file. Just add them to your previous project and redeploy your Google App
Engine application. You should then have a Bot that is both XMPP compliant and also
Google Wave compliant.

Parting notes

Google has posted some excellent documentation on Wave extensions over here and |
recommend them to be read. Key among them is the design aspects about the extensions
which are covered here. It is important to add a parting note that Google Wave is about
collaboration. Collaboration is a process in which participants join each other and engage
in doing something. And if your Robot is to participate in a collaboration then you need
to think out well in advance how it will collaborate with the other participants and how it
can add value to the process. It has to do something that brings meaning and utility to the
collaboration. Of course one can write a fun Robot or a pretty much useless Robot that |
have demonstrated here, but the key thing to take away is the immense power that a
Robot could play in a collaborative process. Imagine a Robot querying a backend system
and fetching a Purchase Order or an Order just placed at a website. Think of a recruiter
asking a Robot to pull up interview slots from a backend system and then presenting that
to the candidate to choose. The possibilities are endless and it should be an exciting
journey ahead to see the Robots that people come up with.

http://code.google.com/apis/wave/extensions/
http://code.google.com/apis/wave/extensions/designprinciples.html

Episode 8: Using Memcache in your GAEJ applications 86

Episode 8: Using Memcache in your GAEJ applications

Welcome to Episode 8. In this episode, we shall cover an important service that is
provided in the Google App Engine. The service is called Memcache and is used allow
applications to manage their data in a cache.

What is a Cache and why do we need one?

As per the Wikipedia definition, a cache is a temporary storage area where frequently
accessed data can be stored for rapid access. Once the data is stored in the cache, it can be
used in the future by accessing the cached copy rather than re-fetching or recomputing
the original data.

The decision to use a cache in your application should come after carefully determining
which operations would be benefit from it. Look at the following scenarios:

1. If you have stored information in a database and which is not updated frequently, then
it might make sense to put some of that information in a cache so that if multiple requests
come for the same data then you can simply look up the memory cache and retrieve it
from there, rather than make repeated database calls that are expensive (and which may
return the same data).

2. If you invoke external web services and you determine that the same data could be
requested, then a cache would help here too to avoid expensive network calls.

There is a lot of material available on the use of a cache in software applications and |
suggest reading from those sources to arrive at a good caching design in your
applications. We shall keep our discussion here limited to a simple use case of using
Memcache, which is a Caching Service provided by Google App Engine and how to
implement it quickly in your application.

Before we begin (Important!)

We will be introducing MemCache in an existing application that we have written. This
was the Dictionary Service Application that we implemented in Episode 4. | strongly
urge you to read up that episode and understand what the application was about and have
that project ready to make changes accordingly.

To recap, our GAEJ Dictionary application is shown below:

1. Navigate to http://gaejexperiments.appspot.com/dictionary.html. This will show a
page as shown below:

http://code.google.com/appengine/docs/java/memcache/
http://gaejexperiments.wordpress.com/2009/10/14/episode-4-building-a-dictionary-app-using-the-gaej-url-fetch-service/
http://gaejexperiments.appspot.com/dictionary.html

Episode 8: Using Memcache in your GAEJ applications 87

) Mozilla Firefox

File Edit “iew Higtorp Bookmarksz Tool: Help
i;l 7 b c x B ||j|http:.-’a’gaeie:-:periments.appspu:ut.u:-:umx’diu: SF v I\‘(ﬂ'*|Wikipedia [ajjx'

J |j http:Hgaeiexperim_umfdi-::tiunar_v.html| e

Dictionary Lookup

Lookup meaning of wnr[l:"
Meanmeg :

Lookup Dictionary |

2. Enter the word that you wish to lookup the definition for in a dictionary and it will
return you the result as shown below:

) Mozilla Firefox

File Edit “iew Higtorp Bookmarks Toolz Help

.6' # L c x 'R I |j | hitp: //gasjexpeniments. appspot. comddic 5.7 I"l."(-"*| wikipedia [ajtx

J |j http:Hgaeiexperim_um!di-::tiunary.html| == | |T
|

Dictionary Lookup

Lookup meaning of wnr:l:lengine

Meaning :

engine n 1: motor that conwverts thermal energy to mechanical work 20 something uzed to
achieve a purpose; "an engine of change" 3: a wheeled vehicle consisting of a self-propelled
engine that 15 used to draw tramns along ralway tracks [syn {locomotve}, {locomotive
engine’} . {railway locomotive]]

| Lookup Dil::til:unﬂr}.f’él |

http://gaejexperiments.files.wordpress.com/2009/10/s2.png
http://gaejexperiments.files.wordpress.com/2009/10/s3.png

Episode 8: Using Memcache in your GAEJ applications 88

Introducing a Cache

The request/response flow for the above Dictionary application is explained below via the
diagram shown:

Google App Engine

GAEJExperiments P External
‘ (1) GAE] I‘*_—;;__--r Dictionary
Browser |"-l— — [Dictionary |, — _1;) Service
(4) Service e
— Senviet

The steps were as follows:

1. The user makes a request to the GAEJ Experiments application by sending a request
for the word.

2. The GAEJ Dictionary Service Servlet receives the Request and makes a call to an
External Dictionary Service hosted at
(http://services.aonaware.com/DictService/DictService.asmx).

3. The Response from the Dictionary Service i.e. the definition of the word is received by
the GAEJ Dictionary Service Servlet.

4. The Response is sent back to the user application.

The flow is straightforward and typically found in most applications. Now, what happens
if several users make a request for the same word? As per the application flow, each
request from the user will result in a call to an external service for the definition,
irrespective of whether it was the same word or not. This is wasteful in terms of network
resources and the application response too. Coupled with the fact that the definition of a
word is not going to change overnight @&, it would be nice to return back the definition
from the GAEJExperiments application itself, if the word definition had been looked up
already. Enter a cache!

So, what we are introducing in our application flow now is a cache called GAEJ
Dictionary Cache and the modified application flow is shown below:

http://gaejexperiments.files.wordpress.com/2009/11/cacheepisode1.png
http://services.aonaware.com/DictService/DictService.asmx

Episode 8: Using Memcache in your GAEJ applications 89

Google App Engine

GAEJExperiments @ External
SAE] — Dictionary
Dictionary Ff**’f@! Service

Service

) [@
|

Browser

o,
(-]
s

— Serviet

®|®

GAE.
Dictionary
Cache

The steps now would be as follows:

1. The user makes a request to the GAEJ Experiments application by sending a request
for the word.

2. The GAEJ Dictionary Service Servlet receives the Request and checks if the word and
its definition is already present in the Cache. If it is present in the Cache, then we
short circuit and go to Step 6.

Optional Steps (3,4,5)

3. If the Servlet does not find the definition in the Cache, then it makes a call to the
External Dictionary Service hosted at
(http://services.aonaware.com/DictService/DictService.asmx).

4. The Response from the Dictionary Service i.e. the definition of the word is received by
the GAEJ Dictionary Service Servlet.

5. The Servlet puts the word and its definition in the Cache, so that future requests to
determine if the word/definition is present in the Cache are fulfilled.

6. The Response is sent back to the user application.
To summarize, we introduced the Cache that functions as follows:
« All word definitions looked up from the External Service are placed in the Cache.

o If aword is already present in the Cache, then it is returned from the Cache itself
and an external network call is saved.

http://gaejexperiments.files.wordpress.com/2009/11/cacheepisode2.png
http://services.aonaware.com/DictService/DictService.asmx

Episode 8: Using Memcache in your GAEJ applications 90

The Memcache Service API

A cache is typically implemented as a Map. A Map is a generic data structure that
contains a key and its value. You look up the Cache by specifying the key and if it is
found, then the value associated with that key is returned. What | am describing here is an
over simplification of what a Cache is. There is a lot more to a Cache implementation
then just putting a value and getting a value. But we shall keep it simple here.

The Memcache Service API is simple enough to use and there is good documentation
available on it here. The Memcache Service implements JSR-107 (JCache Interface).
The JCache classes are present in the javax.cache package and that it what you will use.
At a high level, all you need to do is follow these steps:

1. Get a handle to the Cache implementation:

The snippet of code to do that (reproduced from the Documentation) is shown here:

import java.util .Collections;
import javax.cache.Cache;

import javax.cache.CacheException;
import javax.cache.CacheFactory;
import javax.cache.CacheManager;

Cache cache;

try

{

CacheFactory cacheFactory =

CacheManager .getlnstance() -getCacheFactory();

cache = cacheFactory.createCache(Collections.emptyMap(Q));

catch (CacheException e)

{
/7 ..

b5

The code is simple. We get a handle to the CacheFactory instance and then create a
Cache. Notice that we are creating a Map i.e. an empty Map. Once we have the Map,
then all we need to do is play around with the (key,value) pairs.

2. Put a value or get a value from the Cache

Shown below is how we would use the cache in a simple manner. We invoke the
put(key,value) method on the javax.cache.Cache instance. Similarly, to extract a value,
we need to invoke the cache.get(key) value. It will return us the value if found, which we
can then typecast to the appropriate class.

http://code.google.com/appengine/docs/java/memcache/

Episode 8: Using Memcache in your GAEJ applications 91

String key; // The Word
String value; // The Definition of the Word

// Put the value into the cache.
cache.put(key, value);

// Get the value from the cache.
value = (String) cache.get(key);

GAEJDictionaryCache.java

Let us first discuss a utility class that | have written that encapsulates the Caching API. |
have made this class a singleton and it is called GAEJDictionaryCache. The source
code is shown below:

package com.gaejexperiments.networking;

import java.util _Collections;
import java.util_logging.Level;
import java.util.logging.Logger;

import javax.cache.Cache;

import javax.cache.CacheException;
import javax.cache.CacheFactory;
import javax.cache.CacheManager;

public class GAEJDictionaryCache {
public static final Logger log =
Logger.getLogger (GAEJDictionaryCache.class.getName());

private static GAEJDictionaryCache _instance;
private Cache cache;

private GAEJDictionaryCache() {

try {

CacheFactory cacheFactory =
CacheManager .getlnstance() -getCacheFactory();

cache = cacheFactory.createCache(Collections.emptyMap());

}

catch (CacheException e) {

//Log stuff

log-log(Level _.WARNING, "Error in creating the Cache™);

e

public static synchronized GAEJDictionaryCache getlnstance() {
ifT (Cinstance==null) {
_instance = new GAEJDictionaryCache();

}

return _instance;

b

Episode 8: Using Memcache in your GAEJ applications 92

public String findInCache(String word) {
if (cache.containsKey(word)) {

return (String)cache.get(word);

}

else {

return null;

}

}

public void putlnCache(String word, String definition) {
cache.put(word,definition);

b

Let us discuss the key parts of the code:

1. The Singleton design pattern should be obvious over here and the application
needs to use the getInstance() method to obtain a handle to this singleton.

2. The constructor of this class is private and called only once. In that an instance of

the Cache is created.

There are two utility methods written : findinCache and putinCache.

4. The application invokes findInCache by providing a key value. If the key is
found, the value is written via the cache.get(key) method. For our dictionary
application, the key is the word that you wish to look up the definition for.

5. If the application wants to put a key,value record into the Cache, then it invokes
the putInCache(...) method that takes the key and the value. For our dictionary
application, the key is the word and the value is the definition of the word.

w

By encapsulating the MemCache Service API in this fashion, you can create a reusable
class that takes care of Cache API details. You could then improve upon this class and
provide advanced Cache features and APIs and reuse it in all your future GAEJ
applications.

Modifying the Original GAEJDictionaryService.java
class

All that remains now is for us to modify the existing GAEJDictionaryService.java class
by introducing the appropriate cache usage. The modified code is shown below and |
suggest to look at the comment /MEMCACHE to make it easier for you to see what |
have changed.

package com.gaejexperiments.networking;

import java.io.BufferedReader;
import java.io. lIOException;
import java.io. InputStreamReader;

Episode 8: Using Memcache in your GAEJ applications 93

import java.io.StringReader;
import java.net.URL;
import java.util.logging.Logger;

import javax.servlet.ServletException;

import javax.servlet._http.*;

import javax.xml _parsers.DocumentBuilder;

import javax.xml.parsers.DocumentBui lderFactory;
import javax.xml .xpath.XPath;

import javax.xml _xpath.XPathConstants;

import javax.xml .xpath.XPathExpression;

import javax.xml .xpath.XPathFactory;

import org.-w3c.dom.Document;
import org.-w3c.dom.NodeList;
import org.xml_sax. InputSource;

@SuppressWarnings(*'serial’)
public class GAEJDictionaryService extends HttpServilet {
public static final Logger log =
Logger .getLogger (GAEJDictionaryService.class.getName());
public void doGet(HttpServletRequest req, HttpServletResponse resp)
throws 10Exception {

String strCallResult = "*;
resp.setContentType(*"text/plain™);
try {

//Extract out the word that needs to be looked up in the Dictionary
Service
String strWord = req.getParameter(*'word™);

//Do validations here. Only basic ones i.e. cannot be null/empty
if (strWord == null) throw new Exception("'Word field cannot be empty.');

//Trim the stuff
strWWord = strWord.trim(Q);
if (strWord.length() == 0) throw new Exception(*'Word field cannot be

empty.");

//MEMCACHE
//First get a handle to the Cache
GAEJDictionaryCache cache = GAEJDictionaryCache.getlnstance();

//Determine if the value is present in the Cache
String strWordDefinition = cache.findInCache(strWord);

//1T the word/definition is present in the Cache, return that
straightaway, no need for external network call

if (strWordDefinition '= null) {

//Return the definition

_log-info("'Returning the Definition for ["+strWord+"]"+" from
Cache."™);

Episode 8: Using Memcache in your GAEJ applications 94

strCallResult = strWordDefinition;

else {

_log-info("Invoking the External Dictionary Service to get Definition
for [“+strWord+"]™);

//Make the Network Call

String strDictionaryServiceCall =
"http://services.aonaware.com/DictService/DictService.asmx/Define?word=

strDictionaryServiceCall += strWord;

URL url = new URL(strDictionaryServiceCall);
BufferedReader reader = new BufferedReader(new
InputStreamReader(url .openStream()));
StringBuffer response = new StringBuffer();
String line;

while ((line = reader.readLine()) !'= null) {
response.append(line);

reader.close();
strCallResult = response.toString();

DocumentBui lderFactory builderFactory =
DocumentBui lderFactory.newlnstance();
DocumentBuilder builder = builderFactory.newDocumentBuilder();
Document doc = builder.parse(new InputSource(new
StringReader(strCallResult._toString())));

XPathFactory factory = XPathFactory.newlnstance();

XPath xpath = factory.newXPath();

XPathExpression expr =
xpath.compile(*'//Definition[Dictionary[l1d="wn"]]/WordDefinition/text()"

)

Object result = expr.evaluate(doc, XPathConstants.NODESET);
NodeList nodes = (NodeList) result;

for (inti = 0; i < nodes.getLength(Q); i++) {

strCallResult = nodes.item(i).getNodeValue();

}

//MEMCACHE

//Need to check depending on your logic if the values are good
//Currently we will assume they are and put it in the cache

//For e.g. if the word is not found, the Dictionary Service gets the
word back.

//So you could use that logic if you want.
_cache.putlnCache(strWord, strCallResult);

}

resp.getWriter().printin(strCallResult);

}

http://services.aonaware.com/DictService/DictService.asmx/Define?word=

Episode 8: Using Memcache in your GAEJ applications 95

catch (Exception ex) {

strCallResult = "Fail: " + ex.getMessage();
resp.getWriter().printin(strCallResult);

}

}

@Override

public void doPost(HttpServletRequest req, HttpServletResponse resp)
throws ServletException, I0Exception {

doGet(req, resp);

}
+

Let us discuss the modified flow in brief:

1. We first extract out the word request parameter and do some basic validation to
make sure that it is not empty.
2. We get the handle to the Cache by calling our utility class that we just wrote.

//First get a handle to the Cache
GAEJDictionaryCache _cache = GAEJDictionaryCache.getlnstance();

3. We check if the word is present in the cache. The findInCache method will return
null if not found.

//Determine if the value is present iIn the Cache
String strWordDefinition = cache.findInCache(strWord);

4. If the definition is returned from the cache, then we simply return that and no
network call is made.

5. If the definition is not found, then the network call is made, the response stream is
parsed out for the definition. And the most important step is to put this
definition in the cache, so that the findInCache(...) method will get the
definition, the next time another request for the same word is made.

|_cache.putlnCache(strWord, strCallResult);

Try it out

You can try out the modified Dictionary Service application at:
http://gaejexperiments.appspot.com/dictionary.html. The first time that you search for
a word, it might take some time to get back the definition but once present in the cache, it
is returned much faster. Do note, that if the same word has been looked up by another
user, then the word and its definition will be present in the cache.

http://gaejexperiments.appspot.com/dictionary.html

Episode 8: Using Memcache in your GAEJ applications 96

Cache Design considerations

A cache if implemented well will save your application from repeated resource intensive
operations and also improve application response times significantly. Of course, simply
putting in a cache comes with risks. Some of the factors, you need to take into
consideration are:

1. Determine precisely which operations in your application would benefit from a cache.

2. Analyse if the data that you are putting in a cache changes frequently or not. If it
changes frequently, then it might negate the benefits of a cache.

3. Control the size of the cache and prevent it from becoming too large or unmanageable.
The way we have implemented it, the cache will keep growing and we are leaving it to
the App Engine run time to truncate our cache due to memory limitations if any.

4. Take into consideration several other factors like what is an interval across which you
want to refresh the cache, cache expiration policies, etc.

In short, monitoring the cache and tuning its parameters is required from any production
worthy application.

Moving on

This brings Episode 8 to an end. Hope you enjoyed reading it. If you have been following
the series so far, | would appreciate if you can give me some feedback on how the series
is faring so far. Thank you for your time.

Episode 9: Using the Cron Service to run scheduled tasks 97

Episode 9: Using the Cron Service to run
scheduled tasks

Welcome to Episode 9. In this episode, we shall be looking at how you can run
background tasks in your GAEJ Application. By background Task, I mean any piece of
code that you would like to run at a scheduled time and independent of the user
interaction.There are several examples of such tasks. For e.g. :

e Hourly/Daily/Weekly/Monthly backup of data

o End of the day report generation to report any errors, transactions, etc.

e Sending an email at the end of the day (or once a day) with some information to
subscribers. For e.g. News sites.

If you have written a few web applications, you would definitely have come across more
scenarios like that.

In this episode, we shall cover the following:

1. What is a Cron Job?

2. How to schedule a Cron Job?

3. Write a simple Cron Job that prints a single statement

4. Configure, execute and monitor the Cron Job execution
Let’s go!

What is a Cron Job? When would you need one?

I will use information liberally from Wikipedia over here to explain some of the core
concepts. You can refer to the Cron page at Wikipedia if you want.

The word ‘cron’ is short for Chronograph. A Cron is a time-based job scheduler. It
enables our application to schedule a job to run automatically at a certain time or date. A
Job (also known as a Task) is any module that you wish to run. This module can perform
system maintenance or administration, though its general purpose nature means that it
can be used for other purposes, such as connecting to the Internet and downloading email.

Examples include:

o Taking a daily backup of data via a scheduled task and moving the file to another
server. (Runs once daily)

e Sending an email every week to your subscribers. (Runs once weekly)

e Clearing the log files at the end of every day (Runs once daily)

e Remind yourself of a wonderful weekend coming up, every Friday at 5:00 PM
(Runs once a week on a Friday at 5:00 PM)

http://en.wikipedia.org/wiki/Cron

Episode 9: Using the Cron Service to run scheduled tasks 98

The Google App Engine provides a service called the Cron Service that helps us do two
fundamental things:

1. Allows your application to schedule these tasks.
2. Execute these tasks based on their schedule.

What does a Cron Job look like? And how do | schedule
one?

A Cron Job is nothing but a URL that is invoked by the Google App Engine
infrastructure at its scheduled execution time. To write a Cron Job, you need to do the
following:

1. Write a Java Servlet and configure it in the web.xml. Note down the URL where the
servlet can be invoked. The URL is the <url-pattern> mentioned in the <servlet-
mapping> for your Servlet configuration in web.xml. For e.g. the URL is the <url-
pattern> element specified in the segment of the web.xml that is shown below:

<servlet>
<servlet-name>GAEJCronServlet</servlet-name>
<servlet-class>com.gaejexperiments.cron.GAEJCronServilet</servlet-
class>
</servlet>

<servlet-mapping>
<servlet-name>GAEJCronServlet</servlet-name>
<url-pattern>/cron/mycronjob</url-pattern>
</servlet-mapping>

2. Create a cron.xml file that specifies one or more Cron Jobs (Scheduled Tasks) that you
want to execute. A sample for the above Cron Job is shown below:

<?xml version="1.0" encoding=""UTF-8"?>

<cronentries>

<cron>

<url>/cron/mycronjob</url>

<description>Put your Cron Job description here</description>
<schedule>Put Cron Job Schedule here</schedule>

</cron>

</cronentries>

The cron.xml file tells Google App Engine about the Cron Jobs that are scheduled by
your application. This file resides in the WEB-INF directory of your application and is
copied to the App Engine cloud when you deploy the application. The following points
are important about the cron.xml file:

1. Each Cron Job configured in your application is defined in a <cron/> element. So
there can be one or more <cron/> elements.

http://code.google.com/appengine/docs/java/config/cron.html

Episode 9: Using the Cron Service to run scheduled tasks 99

2. The above <cron/> element has the following 3 elements that defines the Job.

o <url/> specifies where the Google App Engine can invoke your Cron Job.
This is nothing but the Servlet URL that you defined in the web.xml file
that we saw earlier.The Servlet URL will point to your Servlet which
contains the Cron Job implementation.

o <description/> is a simple text based description of what your Cron Job
does. It does not influence any aspect of the execution and is used for
display purposes when you look at your application configuration via the
App Console.

o <schedule/> is the time when your Job has to be executed. This is where
you specify if your job is to be run daily, once every hour, on Friday at
5:00 PM, etc. It is completely dependent on when you wish to execute this
job. However, you must follow some rules and they are specified in the
documentation on Scheduling Format. I strongly recommend you to read
it up to understand various ways of specifying the schedule. Some of the
examples are: “every 1 minute”, “every 12 hours”, “every friday 17:00"
and so on.

Develop a simple Cron Job

The first thing to do is to create a New Google Web Application Project. Follow these
steps:

1. Either click on File —> New —> Other or press Ctrl-N to create a new project. Select
Google and then Web Application project. Alternately you could also click on the New
Web Application Project Toolbar icon as part of the Google Eclipse plugin.

2. In the New Web Application Project dialog, deselect the Use Google Web Toolkit
and give a name to your project. [have named mine GAEJEXxperiments. I suggest you
go with the same name so that things are consistent with the rest of the article, but I leave
that to you. In case you are following the series, you could simply use the same
project and skip all these steps altogether. You can simply go to the next part i.e. the
Servlet code.

3. Click on Finish. This will generate the project and also create a sample Hello World
Servlet for you. But we will be writing our own Servlet.

GAEJCronServlet.java

Our Cron Job is going to be very simple. It is simply going to print out a statement in the
log file that says that it is getting executed. The Cron Service of Google App Engine
automatically will invoke this Servlet when its scheduled time to execute has arrived. So
all we need to do is code out Servlet. The code is shown below:

http://code.google.com/appengine/docs/java/config/cron.html#The_Schedule_Format

Episode 9: Using the Cron Service to run scheduled tasks 100

package com.gaejexperiments.cron;

import java.io. lOException;
import java.util.logging.Logger;

import javax.servlet.ServletException;
import javax.servlet.http.*;

@SuppressWarnings(*'serial’)
public class GAEJCronServlet extends HttpServilet {
private static final Logger _logger =
Logger .getLogger (GAEJCronServilet.class.getName());
public void doGet(HttpServletRequest req, HttpServletResponse resp)
throws 10Exception {

try {
_logger.info("'Cron Job has been executed™);

//Put your logic here
//BEGIN
//END

3

catch (Exception ex) {

//Log any exceptions in your Cron Job
}

3

@0verride

public void doPost(HttpServletRequest req, HttpServletResponse resp)
throws ServletException, I0Exception {

doGet(req, resp);

b

The code is straightforward to understand. It has doGet() and doPost() methods. And
you will find in the doGet() method, that we simply log with an INFO level, that the
Cron Job has been executed. In fact, your actual Job implementation should go in here as
indicated by the comments. So whether you are invoking a backend database, or sending
a consolidated email report, etc should all go in here.

All that remains is to now tell the App Engine via configuration about your Servlet (via
web.xml) and create the cron.xml file in which you will mention your Cron Job.

Configure the Cron Job

As mentioned, we need to configure the Servlet in the web.xml and also specify it in the
cron.xml file. Let us look at that now:

Configuring the Servlet

Episode 9: Using the Cron Service to run scheduled tasks 101

We need to add the <servlet/> and <servlet-mapping/> entry to the web.xml file. This
file is present in the WEB-INF folder of the project. The necessary fragment to be added
to your web.xml file are shown below. Please note that you can use your own namespace
and servlet class. Just modify it accordingly if you do so.

<servlet>
<servlet-name>GAEJCronServlet</servlet-name>
<servlet-class>com.gaejexperiments.cron.GAEJCronServilet</servilet-
class>
</servlet>

<servlet-mapping>
<servlet-name>GAEJCronServlet</servlet-name>
<url-pattern>/cron/gaejcronjob</url-pattern>
</servlet-mapping>

Specifying the Cron Job (cron.xml)

The cron.xml for our application will contain only one Cron Job. And here we specify
the Servlet URL along with the schedule. Notice that [have chosen to execute this Cron
job every 2 minutes. But you are free to experiment if you like with different Schedule
Formats. This files needs to be created in the WEB-INF folder of your project.

<?xml version="1.0" encoding=""UTF-8"?>

<cronentries>

<cron>

<url>/cron/gaejcronjob</url>

<description>GAEJExperiments Cron Job that simply announces that it
got invoked.</description>

<schedule>every 2 minutes</schedule>

</cron>

</cronentries>

Deploy the Application

To deploy the application, follow these steps (they should be familiar to you now. I am
assuming that you already have the Application ID with you):

1. Click on the Deploy Icon in the Toolbar.

In the Deploy dialog, provide your Email and Password. Do not click on Deploy
button yet.

3. Click on the App Engine Project settings link. This will lead you to a dialog,
where you need to enter your Application ID [For e.g. my Application Identifier
gaejexperiments]

4. Click on OK. You will be lead back to the previous screen, where you can click
on the Deploy button. This will start deploying your application to the GAEJ

http://code.google.com/appengine/docs/java/config/cron.html#The_Schedule_Format
http://code.google.com/appengine/docs/java/config/cron.html#The_Schedule_Format

Episode 9: Using the Cron Service to run scheduled tasks 102

cloud. You should see several messages in the Console window as the application
is being deployed.
5. Finally, you should see the message “Deployment completed successfully”.

We can now check if the Google App Engine got our Cron Job correctly configured and
verify if it is getting executed at the schedule that we have configured it to.

Monitoring the Cron Job

You can use the App Engine console to verify if your Cron Job is executing well or not.
To do that, perform the following steps:

1. Go to http://appengine.google.com and log in with your account.

You will see a list of applications registered. Click on the application that you just
deployed. In my case, it is gaejexperiments.

3. When you click on a particular application, you will be taken to the Dashboard
for that application, which contains a wealth of information around the requests,
quotas, logs, versions, etc.

4. Verify that the Cron Jobs that you specified in the cron.xml have been configured
successfully for the application by clicking Cron Jobs, visible under Main. For
our application that we deployed, here is the screen shot from the App Engine

console:
L:nl ﬁlk" app engine romin. k. irani@gmail.com | My Account | Help | Sign ou
i i Show &
gasjexperimants = Version: 3
Below are schaduled 1asks (cron pobs) for the application. Cron jobs are dafined in eesn. yas] '|.";,'13"l¢l'-i Of ersn_e=l [Java) Leam more
Main abonut crom
Dashhoard
= A Cron Job Schedube/Last Run/Last Status (A thnes are UTC)
Qupta Dietgils
lcrongasjcronjohb wary ¢ minides (UTC)
Logs GAEJExpariments Cron Jab that simply announces that it got rmaoked Haszat man yat
Cromn Jols
Tagk Queyes
Diatastors

|ndexes

Ca

Siatistics

Administration
Application Setfings

gy g
Wersioms

Bdmin Legs

You will notice that the Cron Job has not yet run as the console indicates. Every time that
the job is executed, this column is updated with the last date time stamp that the Job
executed along with its status. Since we have configured our Job to run every 2 minutes, I
waited for 2 minutes and then the job executed itself and when I refreshed the Cron Jobs
page, the status was updated as shown below:

http://gaejexperiments.files.wordpress.com/2009/11/ep9-1.png
http://appengine.google.com/

Episode 9: Using the Cron Service to run scheduled tasks 103

L.:L‘.Il -Sll._‘ app engine romin. k. rani@gmail.com | Wy Accoun | Hel | Sign oul
E a Shiw Al Apdlgienid
pasjexpenments = Verslon: J now A3 Apgligtsna
Below ae schadulsd Easks {cron jobs] for the Bppkcaton. Cron jobs are defined in ezen. pasl [PyiN0N) Of eses . amd (Jaa)] Leam mone
Kain ahout cron
Dashboard
Cram Joby Schedulailast RunilLas Status (A1l times are UTC)
Quola Delais
{eronigaajcran|ob every 2 minutes (UTC)
Liags GAEJEwpanmeants Cron Job that simply announces that it got invoked DO 11116 155648 on tima SUCCAES
Cron Jobs
[as g

You can also click on the Logs link. This will display the application log. And all your
application log statements that you code using the Logger class can be visible here. By
default, the severity level is set at ERROR and we can change that to INFO and you
should be able your log statements that had the log level of INFO. This was the log level
at which we had logged the statement in our Java Servlet (Cron Job). Shown below is a
screen shot of the log when the Cron Job was fired once.

{0 -ﬂh‘ 80P ENging romin.iraniggmall.com | K foog
gasEnpeamiany = Wadsiaan! 3

Main Filsr Loga

Jashiboar Mmimum Seenty | g = | B Cphoeg
Lzl Tipe Clck a log lme 10 show or hide #e detals
Lgs 1.2
Ciom dob Py el : T
L B 1116 OF-S6aM 26 223 iorom'gaejcrenjob 200 1073ms 1965cpu_ma 4 Okt
Taak Queuas D101 = = [LE/Movfa00B10Te56145 -0800] MOET fercefgaedsranioh HITEFL.2% 300 & - - “QeeeNparimsncs . appapor.ccm®
Omtastare W 1116 07 SEAM &8 240
Indaxas b 1 . '
'.:.l..'J'r'_:l_l.::;::'.'.:‘.'."..'_.Jn:...' cESarviet Ac0ati Cron JEBb hal Sekh fEEsuted

This concludes Episode 9 of this series in which you learn how to schedule tasks in your
Google App Engine applications. These background tasks that can be scheduled at a
certain time and which are executed by the Cron Service are an indispensable part of
several web applications that are deployed today. If you ever wish to do repeated tasks in
your application without any user intervention like sending emails, crawling web sites,
taking database backups, etc, then writing a Cron Job and scheduling it for execution is a
key feature that you can utilize while deploying your application to Google App Engine.

There is a lot more to Cron Jobs and I suggest to read up the documentation.

http://gaejexperiments.files.wordpress.com/2009/11/ep9-2.png
http://gaejexperiments.files.wordpress.com/2009/11/ep9-3.png
http://code.google.com/appengine/docs/java/config/cron.html

Episode 10: Using the Task Queue Service 104

Episode 10: Using the Task Queue Service

Welcome to Episode 10. In this episode, we shall cover the experimental Task Queue
Service in Google App Engine. This is an experimental service, which means that it
could undergo change in its core functionality from all respects like methods, package
names, etc. In any case, we can safely expect that it shall get confirmed in some form or
the other in a future release of the Google App Engine.

This episode is sort of a natural progression on our last episode, which covered the Cron
Service. To reiterate, the Cron Service was used for background jobs that you wish to
perform outside of a user request. They are not typically initiated by a user but instead
configured by your application to perform certain periodic tasks like summary reports at
end of the day, daily backups, etc. The Task Queue Service provides a facility to process
tasks in the background which are :

o Typically initiated by the user.
e They can be created internally by the application also to break down a
background job into smaller tasks.

Some of the examples of performing a Task in the background include:

1. A user signs up at the website and submits his/her information. On receiving the
request, a simple message is displayed back to the user that his/her subscription request
has been received and they will hear soon about the status. At the same time, a task can
be created that can process this users request, perform some verification and then send
out an email to the user if the subscription is setup successfully. So you could have done
either of the following:

e Receive the user details and create a Task. This single task will take care of
creating the required records in the database and send out an email.

e Receive the user details and create a Task. This task will simply create a record in
the database and then create another task to send out an email.

e Andsoon.

2. An online shopping site could accept the order from a buyer. A task is then created in
the system that will process the order. As part of the order processing, once shipping is
done, another task is told to update the shipping status. Similarly when the logistics
provider gives updates on the shipment locations, a task could be launched to update the
shipment route of the package.

To summarize, any background (asynchronous) task can be launched when a user
initiates the event or when an application or business event occurs. All these tasks are put
into one or more user defined or default queues and are executed by the Google App
Engine infrastructure on behalf of your application.

http://code.google.com/appengine/docs/java/taskqueue/overview.html
http://code.google.com/appengine/docs/java/taskqueue/overview.html
http://gaejexperiments.wordpress.com/2009/11/16/episode-9-using-the-cron-service-to-run-scheduled-tasks/
http://gaejexperiments.wordpress.com/2009/11/16/episode-9-using-the-cron-service-to-run-scheduled-tasks/
http://code.google.com/appengine/docs/java/taskqueue/overview.html

Episode 10: Using the Task Queue Service 105

What does a Task constitute? What is a Queue ? Who
executes it ?

The official documentation of Tasks is excellent and | suggest reading that in detail. In
this episode | will cover just about enough for you to get started on Tasks and then dig
deeper into them depending on your needs. So let us first understand what is the basic
information that | need let the Google App Engine know about my task. | will take the
liberty here to describe all the key concepts via an example that we will build in this
application.

We wish to implement the following flow in our application:

1. A user wishes to sign up for your newsletter by providing an email id in a web form
provided at our site.

2. The user enters the email id and clicks on sign up (a button).

3. The request is sent to a Servlet that accepts the email id and creates a Task. The
response is sent back to the user thanking them for their interest.

4. The Task is then executed independently by the Google App Engine infrastructure and
our code inside the Task i.e. checking if the email id is used, etc is verified and then an
email is sent.

So, as you can see we have decoupled the background task (in step 4) from the sign up
process (step 1, step 2 & step3).

It should now be straightforward to define the key elements:

1. Task : This is the unit of work that we wish to perform. In fact, the actor that will be
performing this task is Google App Engine. So when we create a Task, we need to
provide a standard way for the Google App Engine to invoke tasks and pass them their
payload. It should now be straightforward to see that when we create a task, all we need
to tell GAEJ is the URL (where to invoke the task) and the parameterized payload (data).
This can be done in a standard fashion that you know. The URL is nothing but the servlet
URL that will invoke the servlet that implements the Task. And the parameterized data is
nothing but request parameters passed into your servlet so that it can execute accordingly.
The data in this case will be nothing but the email id of the user who wants to sign up for
your newsletter.

2. Queue : All Tasks when they are created are placed in a queue. They are then executed
by the Google App Engine. To help us manage and categorize our tasks, you can define
your queues by giving them appropriate names. For e.g. myqueue, emailqueue, etc. What
this helps you to do is to place your tasks in the appropriate queue. Few points to note
about queues (refer to the documentation for finer details):

e All queues in your application are defined in a file named queue.xml that is
present in the WEB-INF folder of your application.

http://code.google.com/appengine/docs/java/taskqueue/overview.html
http://code.google.com/appengine/docs/java/taskqueue/overview.html

Episode 10: Using the Task Queue Service 106

o Each queue has a unique name and you can control the rate at which tasks are
executed in this queue by the Google App Engine. If you do not specify a rate,
then the default rate is 5 tasks/second.

e There is a default queue for your application named ‘default’ and if you can
chose to add your tasks to the default queue. Alternately, you can add them to
your application defined queue.

I believe this should be sufficient for us to begin developing a simple flow that will
demonstrate how to define a task queue, create a task and then see it getting executed by
the Google App Engine.

Task Queue in Action

The diagram below shows what we will implement in the next few sections. The use case
is that of an user that wishes to subscribe to our newsletter and how we shall break up the
process into the request processing and then the task processing.

Create Task Sarviet
o @

=
/gaejcreatetask? GAEJCreateTaskServiet

emailid=Xxx

User

® .

Task Instance

URL [[gaejsignupsubscriber]
and
Data [emailld]

g —_—

—1 9® Goagle App

/ Ergine
subscription-

gueue @
\“"'\-_._‘___-_-_'_._,_o-"'-/ L :
Signup Subscriber Serviet

GREJSignupSubscriberServliet

http://gaejexperiments.files.wordpress.com/2009/11/highlevelflow.jpg

Episode 10: Using the Task Queue Service 107

Let us break down the above flow into the steps given below and what we shall be
developing at each step:

1. In Step 1, the user visits a web page and enters his/her email id to sign up for the
newsletter. We shall not be developing a web page over here to keep things simple.
Instead we shall be testing it out by directly invoking a servlet that accepts the email id of
the user. This is the same thing that you would have normally done by hooking up the
action of the HTML form to that of this servlet.

2. In Step 2, we will be looking at a Servlet whose existence is to do some verification
and then create a Task for background processing. This servlet
(GAEJCreateTaskServlet) will create a Task in a queue called subscription-queue. As
we covered earlier, to create a Task, we need to provide two pieces of information to the
Google App Engine so that it can execute it. They are the URL and the Data. The URL
(/gaejsignupsubscriber) is going to be that of a Servlet
(GAEJSignupSubscriberServlet) that shall be doing the core task. And the data will be
what the servlet needs to complete the task. In our case, the data is the emailid request
parameter.

3. In Step 3, Google App Engine automatically scans the queues for any tasks that are
queued up and picks them up for execution. In our case, it will find a Task instance and
execute it by invoking the URL (/gaejsignupsubscriber) and passing it the relevant data
i.e. emailid

4. Finally in Step 4, our Servlet (GAEJSignupSubscriberServlet) is invoked and it will
complete its task. To keep things simple in our example, it will currently only print out a
message. But it should be obvious that core logic associated with the task would have
gone into the Servlet here. For our specific case, it would have involved checking if the
user has not signed up already, creating a database record and then sending off a welcome
email.

Implementing the above flow

To summarize the above steps in terms of what we have to code, here is the list:

1. Code the GAEJCreateTaskServlet that will accept the request parameter and create a
Task instance in the subscription-queue.

2. Code the GAEJSignupSubscriberServlet that will be invoked by Google App Engine
automatically. We will currently only print out a log statement because the intent is to
demonstrate the whole sequence.

3. Configure our queue (subscription-queue) in a file named queue.xml. This file needs
to be placed in the WEB-INF folder of your application.

Episode 10: Using the Task Queue Service 108
4. Configure our GAEJCreateTaskServlet and GAEJSignupSubscriberServlet in the
web.xml file.

Finally, we can execute our application and use the local development server to see the
application in action. Users can optionally even deploy it to the Google App Engine

cloud if they wish.

So let us get started.

GAEJCreateTaskServlet.java

This servlet accepts our request for subscription. We shall invoke it via the following url :
http://appurl/gaejcreatetask?emailid=XYZ.

package com.gaejexperiments.taskqueue;
import java.io. lOException;

import javax.servlet.ServletException;
import javax.servlet.http.*;

import com.google.appengine.api . labs.taskqueue.Queue;
import com.google.appengine.api . labs.taskqueue.QueueFactory;
import com.google.appengine.api . labs. taskqueue.TaskOptions;

@SuppressWarnings(*'serial')

public class GAEJCreateTaskServlet extends HttpServilet {

public void doGet(HttpServletRequest req, HttpServletResponse resp)
throws 10Exception {

String strCallResult = ";
resp.setContentType("'text/plain™);
try {

//Extract out the To, Subject and Body of the Email to be sent
String strEmailld = req.getParameter(“'emailid™);

//Do validations here. Only basic ones i.e. cannot be null/empty

if (strEmailld == null) throw new Exception("Email Id Ffield cannot be
empty.");

//Trim the stuff

strEmailld = strEmailld.trim();

if (strEmailld.length() == 0) throw new Exception("'Email 1d field cannot
be empty.');

//Queue queue = QueueFactory.getDefaultQueue();

Queue queue = QueueFactory.getQueue(''subscription-queue'™);
queue.add(TaskOptions.Builder._url (*"/gaejsignupsubscriber™) .param(*‘emai
lid",strEmailld));

strCallResult = ""Successfully created a Task in the Queue';
resp.getWriter().printin(strCallResult);

Episode 10: Using the Task Queue Service 109

catch (Exception ex) {
strCallResult = "Fail: " + ex.getMessage();
resp.getWriter().printin(strCallResult);

}
}

@0verride

public void doPost(HttpServletRequest req, HttpServletResponse resp)
throws ServletException, I0Exception {

doGet(req, resp);

}
}

The code listed below is straightforward to understand. It does the following:
1. Extracts out the request parameter (emailid) and does some basic validation on it.

2. It gets a handle to the subscription-queue through the following statement:

|Queue queue = QueueFactory.getQueue(''subscription-queue');

3. It adds a Task to the above queue by providing a Task URL (/gaejsignupsubscriber)
and Data (emailid parameter). It uses a helper class TaskOptions.Builder to help create
the instance of the task. As you can see it provides a url and then the param. The task is
created by invoking the add method on the queue.

queue.add(TaskOptions.Builder.url (*"/gaejsignupsubscriber™) .param(*email
id”,strEmailld));

4. For the readers information, | have shown a commented out line

//Queue queue = QueueFactory.getDefaultQueue();

which shows how to get the handle to the default queue in case you wish to place your
tasks in the default queue itself.

5. Do not that all the Task Queue classes are experimental and are present in the
com.google.appengine.api.labs.taskqueue package. This could change in the future.

GAEJSignupSubscriberServlet.java

This servlet contains the core task logic. This will be invoked by Google App engine if it
finds any tasks present in the subscription-queue. If any tasks are there, it will pick them
up and invoke the URL mentioned in the Task and pass to it the data present in the Task
instance. The code shown below is straightforward, it simply logs a statement saying that
it got invoked and it also logs the email id.

Episode 10: Using the Task Queue Service 110

package com.gaejexperiments.taskqueue;

import java.io. l0OException;
import java.util.logging.Logger;

import javax.servlet.ServletException;
import javax.servlet.http.*;

@SuppressWarnings(*'serial’)

public class GAEJSignhupSubscriberServlet extends HttpServilet {
private static final Logger _logger =

Logger .getLogger (GAEJSignupSubscriberServlet.class.getName());
public void doGet(HttpServletRequest req, HttpServletResponse resp)
throws 10Exception {

String strCallResult = "*;

resp.setContentType(*'text/plain™);

try {

String strEmailld = req.getParameter(“'emailid™);
_logger.info(""Got a Signup Subscriber Request for Email ID : "+
strEmailld);

//

// PUT YOUR TASK CODE HERE

//

strCallResult = "SUCCESS: Subscriber Signup™;
_logger.info(strCallResult);
resp.getWriter() -printin(strCallResult);

catch (Exception ex) {

strCallResult = "FAIL: Subscriber Signup : "+ ex.getMessage();
_logger.info(strCallResult);

resp.getWriter() -printin(strCallResult);

+
}

@Override

public void doPost(HttpServletRequest req, HttpServletResponse resp)
throws ServletException, I10Exception {

doGet(req, resp);

}
b

gueue.xml

All queues are configured in a file named queue.xml. Google App Engine provides a
default queue. This queue is aptly named “default”. But in case you need to define your
own queues, which is what we are going to do, we need to define them in a file called
queue.xml. This file is placed in the WEB-INF directory of your application. You can
also override settings of the default queue by defining it in the file and providing your
own values.

Episode 10: Using the Task Queue Service 111

Take a look at the queue.xml shown below:

<?xml version="1.0" encoding=""UTF-8"?>
<queue-entries>

<queue>

<name>default</name>
<rate>5/s</rate>

</queue>

<queue>
<name>subscription-queue</name>
<rate>5/s</rate>

</queue>

</queue-entries>

In the above configuration, you will find that we have defined our own queue named
“subscription-queue”. There is also another element that we have defined for the
<queue> called <rate>. This element determines the rate at which you tell Google App
Engine to execute tasks. If you do not specify a rate, then the default execution rate is 5
tasks per second. In the above file, we have provided the expression as “5/s”, which reads
as 5 per second. Other examples of <rate> expressions are 1000/d (One thousand per
day), etc. I suggest to read up the documentation for more examples.

You will also find that we have defined the default queue and we can change the rate if
we want. But | have left it as is.

Please make sure that the above file (queue.xml) is present in the WEB-INF folder at the
time of deploying the application.

Configuring the Servlets (web.xml)

We need to add the <servlet/> and <servlet-mapping/> entry to the web.xml file. This
file is present in the WEB-INF folder of the project. The necessary fragment to be added
to your web.xml file are shown below. Please note that you can use your own namespace
and servlet class. Just modify it accordingly if you do so. We are defining here both our
servlets.

<servlet>

<servlet-name>GAEJCreateTaskServlet</servlet-name>

<servlet-

class>com.gaejexperiments. taskqueue.GAEJCreateTaskServilet</servlet-
class>

</servlet>

<servlet>

<servlet-name>GAEJSignupSubscriberServilet</servlet-name>

<servlet-
class>com.gaejexperiments.taskqueue.GAEJSignupSubscriberServlet</servile
t-class>

</servlet>

<servlet-mapping>
<servlet-name>GAEJSignupSubscriberServilet</servlet-name>

Episode 10: Using the Task Queue Service 112

<url-pattern>/gaejsignupsubscriber</url-pattern>
</servlet-mapping>

<servlet-mapping>
<servlet-name>GAEJCreateTaskServlet</servlet-name>
<url-pattern>/gaejcreatetask</url-pattern>
</servlet-mapping>

Task Execution in Action

I am assuming that you have already created a new Google Web Application Project and
have created the above Servlets, web.xml and queue.xml respectively. For a change, we
shall be running this episode within our local development server only.

So assuming that all is well, we will run our application, by right-clicking on the project
and selecting Run As —> Web Application. Once you see the following message shown
below, then the local server is ready to accept requests.

Nov 24, 20095:11:33 AM com.google.apphosting.utils. jetty.Jettylogger
info

INFO: jetty-6.1.x

Nov 24, 2009 5:11:40 AM com.google.apphosting.-utils. jetty.Jettylogger
info

INFO: Started SelectChannelConnector@127.0.0.1:8080

The server is running at http://localhost:8080/

Follow the steps given below:
1. Launch the browser on your local machine and navigate to

http://localhost:8080/_ah/admin. This is the administrative console of the local
development server.

GO :_qlL App Engine

gaejexperiments Development Console

WP Datastore Viewer
Task Queyes The datasione iz empty. You nead to add dsta programatically before you can use this tool 1o views and adit it
EMPP

|nbound hail

http://gaejexperiments.files.wordpress.com/2009/11/ep10-1.jpg

Episode 10: Using the Task Queue Service 113

2. Click on Task Queues to view the current task queues that are configured in your
application. You should see the screen shown below, which shows that we have
configured two task queues: default and subscription-queue.

You will notice that both of the queues currently do not have any tasks since we have not
created any.

I{_-.l::I :‘Jl.[App Enging
gaejexperiments Development Console

Task Queues

[l astore Wievwer
Task Queues Tagks wall not run aulamalecally. Selec! a guewe 1o ren Lagks manually
MPF
prad Gusus Hame Maximum Rate Buckat Size Hdest Task (TCH Tasks i Ouave
Inboumg il
ot [HE a0/ 5 1] Flig=h Qusue
subacription-gugye 505 5 1] Fluzh Queur

3. The next step is to create a task in the subscription-queue. To do that, all we need to
do is invoke the following url :

http://localhost:8080/gaejcreatetask?emailid=romin@rocketmail.com

This invokes our GAEJCreateTaskServlet that we have configured. It will create the
sample task in the subscription-queue and we will see a message as shown below in the
browser:

“Successfully created a Task in the Queue”

4. Click on the Task Queues link again, you will find that there will now be 1 task listed
in the subscription-queue as shown below:

Task Queues

Tasks will not run automatically. Select a queue to ren tasks manually

tueue Hame Maximum Rate Bucket Size Oldest Task (UTC) Tasks in Gueue
default 5.0/ 5 a Flush Clueus
subscnplion-quese 5vs E Tue Naov 24 05:13:22 UTC 2008 1 Flush Queus

5. Click on the subscription-queue link. This will display the task instance as shown
below:

http://gaejexperiments.files.wordpress.com/2009/11/ep10-2.jpg
http://gaejexperiments.files.wordpress.com/2009/11/ep10-3.jpg

Episode 10: Using the Task Queue Service 114

Tasks for Queue: subscription-queue
Tazks will not sun autornatically. Push the Run' button 1o sxecule sach task

Task Name ETA {UTC) Method URL
taskl Tue Mov 24 05:13:22 UTC 2009 (-218.562:) POST fgaejsignupsubscnber Run Delete
1

6. Since this is the development server, no automatic execution of tasks (this will occur in
Google App Engine cloud) will take place and you have to run them manually, by
clicking on the Run button. Click that. It will display that there are no more tasks present
if the task executes successfully.

Tasks for Queue: subscription-queue

This gueue doesn't contain any tasks.

7. To check that our task has executed successfully, we can visit the Console tab in
Eclipse and you will see the success log as shown below:

1% - Problams | (@ Javadoe | Declaration | 2 Corisols 33 ©'] Emor Log)| & ool e e e e e e LT
;I@.ﬁEJEMM PwiabApplication] C:\Frogram Fles'Jd svalyrel B0 DB\bn'javaw.ene (Mov 24, 2009 104728 AM)
How 24, Z009 S5:20:06 AH com.gagjsxperiments.taskgueus, GAEIFignupSubscr iberservlet doGee -:J

Butiads

1 [T

¢ Regquasc for Emall ID ! rominfrocketmall.oom

up Subsc

S5:EZ0:06 AW com.gasijexperiments. cgahquese . GREJTignupSubser iber Seryler doGat

|INFo: SUCCESS: Subscriber Signup

Moving on

In this episode, we saw how to split up a process into individual tasks and assign them to
the Google App Engine for execution. What we have demonstrated here is a simple flow
and the specifics of the configuration. | encourage you to try it out in your applications
and as an exercise deploy it to the Google App Engine and monitor it there via the
Administration Console.

Do keep in mind that this API is experimental and is likely to change drastically. At the
same time, if you have any feedback, it would be nice to pass it along to the Google App
Engine team.

http://gaejexperiments.files.wordpress.com/2009/11/ep10-4.jpg
http://gaejexperiments.files.wordpress.com/2009/11/ep10-5.jpg
http://gaejexperiments.files.wordpress.com/2009/11/ep10-6.jpg

Episode 11:Develop Simple Google Wave Robots using the WadRobotFramework 115

Episode 11: Develop Simple Google Wave Robots using
the WadRobotFramework

Welcome to Episode 11 of this series. We saw in earlier Episode # 7, how you can write a
Google Wave Robot. Please go through that tutorial to get familiar with the basics. This
episode will be focused on writing a Google Wave Robot using a framework called the
WadRobotFramework. This framework aims to help you develop your Robot quickly so
that you can focus on the logic of your Robot, while letting the framework do the heavy
lifting. Sure, you can do your programming with the Google Wave Robot API as
explained in Episode 7, but this framework as we shall see wraps the details nicely so that
you get to focus on your Robot logic.

What is the WadRobotFramework?

The WadRobotFramework is available at
http://code.google.com/p/wadrobotframework. This framework is the work of Jerome
BATON, who has stated that the goal of the framework is to make writing Google Wave
Robots in Java much simpler.

The framework goes ahead and defines two kinds of Robots: Simple and Advanced.
Simple Robots

Simple Robots are typically those that can react to a new Blip. This kind of Robots
simply wait till a Blip is submitted. And on submission of the Blip, they will append a
message to the Blip. It could be as simple as just analyzing the text of the blip and
appending some new information or simply a fun sort of a Robot, which simply prints a
random message.

An example of a this is shown below and which we will build in this episode:

http://gaejexperiments.wordpress.com/2009/11/04/episode-7-writing-your-first-google-wave-robot/
http://gaejexperiments.wordpress.com/2009/11/04/episode-7-writing-your-first-google-wave-robot/
http://code.google.com/p/wadrobotframework/
http://code.google.com/p/wadrobotframework/
http://twitter.com/wadael
http://twitter.com/wadael

Episode 11:Develop Simple Google Wave Robots using the WadRobotFramework 116

Google wave (EEEENEED EEREERE o | e

Hello st = i

G Reply b Playback Uniolow Actwe | i Spam | ¥ Read O Unead | @ Trash -

w

[Hella 9473 nm

| lyHobot: | am appending some text too S43ipm =
o

| MyRobot g 41 nm
1 &, | am the Appender Robot

Fileg

In the above wave, there are two participants (myself and the Robot). The Robot
announces itself when it is added to the Wave. Additionally, whenever I submit a Blip
(for e.g. Hello), it simply appends a new blip with some text.

Simple Robots are also those that can modify the Blip Text instead of appending a new
blip. For e.g. They could read the blip text and filter out the profanities, do automated
spell checks or simply add some information to the existing Blip Text itself. In other
words, it modifies the Blip Text.

Shown below is an example of a Simple Robot that modifies the Blip Text:

http://gaejexperiments.files.wordpress.com/2009/12/ep11-81.jpg

Episode 11:Develop Simple Google Wave Robots using the WadRobotFramework 117

G{}L}Sle wave LAV S el S - Romin | Terms

8.

& Reply [Playback & Unfollow | B Archive | &2 Spaml | 3 Read @ Trash

me {and MyRobaot): 1453 pm

Hello [You typed this at :Wed Dec 0216:19:25 UTC 2009]

r-.1-,-F3:--I:|:| 348 pm -
&4 | am the Blip Modifier Robot

Tags: |+ Files ~

In the above wave, there are two participants (myself and the Robot). The Robot
announces itself when it is added to the Wave. Additionally, whenever | submit a Blip
(for e.g. Hello), it simply modifies the Blip Text by mentioning when | submitted the Blip
text.

There is also a 3rd thing that the Simple Robots could do, which is very useful too. They
can act in a stealth manner and simply do their work quietly. For e.g. whether you wish
to write a Robot that appends a Blip or modifies a submitted Blip, you can simply chose
not to append or modify but instead get the Blip text and do your work quietly. For e.g.
count the words in the background, etc.

The WadRobotFramework also supports Advanced Robots, which are particularly
interesting and will be covered in the Next Episode.

Advanced Robots are those that can react to commands in the Blips. Here are some
samples of Advanced Robots and how they would react to commands from Blips:

1. A character Counting Advanced Robot:

Your submitted Blip Text contains : “Here is some text in the blip. Please count the
length of this message for me. {mycountingrobot:count}”.

http://gaejexperiments.files.wordpress.com/2009/12/ep11-12.jpg

Episode 11:Develop Simple Google Wave Robots using the WadRobotFramework 118

You can write an advanced Robot (mycountingrobot) that knows how to count the length
of the message. So it gets notified when it there is a command (count) in the Blip. Your
Advanced Robot can then count out the characters and then either append or modify a
blip as needed.

2. A Tweeting Robot:
Your submitted Blip Text contains the following text : “{mytweetingrobot:tweet}

You can write an advanced Robot (mytweetingrobot) that knows how to tweet the
message to Twitter. So it gets notified when it there is a command (tweet) in the Blip.
Your Advanced Robot can then append a blip or modify a blip saying that the message
has been tweeted.

The best part of it all is that you could combine all of this into a single Robot that can
respond to one or more commands. For example, take a look at Today’s Special Robot
(see http://ppandhi.wordpress.com/2009/11/08/todays-special-robot/) that can respond to
more than one command. It can give you the quotes, day in history, word of the day,
cricket score, your daily horoscope by simply responding to the command that you type
in. With the WadRobotFramework, we shall see in the next episode how you can write
such an Advanced Robot that responds to different commands. If you cannot wait, take a
look at the documentation at the site (Advanced Robots).

Since this episode will be focusing on Simple Robots, let us recap what we know so far:
The WadRobotFramework supports Simple Robots in two flavours: The

BlipAppenderRobot and the BlipModifierRobot. The BlipAppenderRobot is used to
simply append to a Blip. The BlipModifierRobot is used to modify a submitted Blip.

Simple, isnt it? Lets develop and deploy our Simple Robots using the
WadRobotFramework.

Create a New Project

We need to create a New Project first. Follow the steps below:

1. Either click on File —> New —> Other or press Ctrl-N to create a new project. Select
Google and then Web Application project. Alternately you could also click on the New
Web Application Project Toolbar icon as part of the Google Eclipse plugin.

2. In the New Web Application Project dialog, deselect the Use Google Web Toolkit
and give a name to your project. | have named mine MyGoogleWaveRobot and | suggest
you go with the same name so that things are consistent with the rest of the article (but if
you wish to name it something else, that is fine too). The Screenshot is shown below:

http://ppandhi.wordpress.com/2009/11/08/todays-special-robot/
http://code.google.com/p/wadrobotframework/wiki/Advanced_Robots

Episode 11:Develop Simple Google Wave Robots using the WadRobotFramework 119

'1:} Mew Web Application Project !EI m
Create a Web Application Project

Create a Web Application project in the workspace or in an external
location

Project name:

|MyG oogleWaveRobot

Package: (e.g. com.example myproject)

|cum.gaejexperim ents waverobot

~ Location
(& Create new project in workspace
(" Create new project in:

[BireEtEms IIZ: wgalileo-workspace\MyGoogleWaveRobot Efawee. |

~Google SDKs

[~ Use Google Web Toolkit
(8 (e cletalt S (IEh = Canfigure SDKs. .
€ Utbicpeonic ok [GWIT - 170 |

[+ Use Google App Engine
& Use default SDK (App Engine (1) - 1.2.8) Configure SDKs__

" Use specific SDK: I.ﬂar_rp Engine (1) - 1.2.6 j

(?) Finish Cancel

-

3. Click on Finish. This will generate the project and also create a sample Hello World
Servlet for you. But we will be writing our own Servlet. So | suggest that you can delete
the Servlet Java class and the mappings made in the web.xml or you can leave it for
now since we are going to write our own.

Adding Google Wave Robot JAR files and
WadRobotFramework JAR file to your Project Path

http://gaejexperiments.files.wordpress.com/2009/12/ep11-1.jpg

Episode 11:Develop Simple Google Wave Robots using the WadRobotFramework 120

Since we are going to be writing a Wave Robot, we need some additional files on the
client side. These additional files (JAR files) are required for the additional Wave API’s
and also for deployment in your WEB-INF\lib folder, so that they are correctly deployed
and available to the run-time engine. These JAR files do not ship along with the Google

Eclipse plugin, so you will need to download them for a website. The Google code
website for the JAR files is:

http://code.google.com/p/wave-robot-java-client/downloads/list

The web page when you navigate to the above URL is shown below:

"- f wave-robot-java-client
Wave Robot Java Client Libraty

Project Home Downloads Source

Search | Currentdaownloads =] for | Searchl
Filename ~ Summary + Labels ™

weave-robot-api-20090916. jar Wave Robot Java Client Library Festured

0auth-20090517 jar OAuth jar

[sOnrpc. jar jsonrpc.jar

|son.jar |san.jar

Download all the above files to your machine.
The WadRobotFramework JAR file is available at the following location :

http://code.google.com/p/wadrobotframework/downloads/list

The web page when you navigate to the above URL is shown below:

http://gaejexperiments.files.wordpress.com/2009/11/ep7-6.png
http://code.google.com/p/wave-robot-java-client/downloads/list
http://code.google.com/p/wadrobotframework/downloads/list

Episode 11:Develop Simple Google Wave Robots using the WadRobotFramework 121

romin.k.irani@gmail.com | My favontes | | Profile | Sign out

[- wadrobotframework [T
"= A framework for writing wave robofs quickly

Project Home Cownloads Wiki Issues Source

New download | Search | Cumentdownloads %] for | Search

1-10of1
Filename ~ Summary + Labels = Uploaded = Size~ DownloadCount~

WadRobotFramework jar Version 1.0 Featured 19 hours ago 11 8KB 3

1-10f1

2009 Google - Code Home - Terms of Senvice - Privacy Policy - Site Directory - Project Hosting Help

Hosted by (GO :-SIL‘ code

Once you have downloaded the files, follow these steps to setup your Project Build Path
and runtime correctly.

1. Copy all the 5 JAR files to the WEB-INF\lib folder of your Eclipse Project. After
copying you should see the files as shown in the project hierarchy below:

- WEB-INF

=& lib

----- |= appengine-api-1.0-sdk-1.2.6 jar
----- = appengine-api-labs-1.2.6 jar

----- |= datanucleus-appengine-1.0.3 jar
----- =l datanucleus-core-1.1.5 jar

----- |= datanucleus-jpa-1.1.2 jar

----- = geronimo-jpa_3.0 spec-1.1.1 jar
----- = geronimo-jta_1.1_spec-1.1.1 jar
jdo2-api-2_3-eb jar

e =l jsonrpc.jar
&= 0auth-20090617 jar
& =1 WadRobotFramework_jar

g =kwave-robot-api-20090916 jar

http://gaejexperiments.files.wordpress.com/2009/12/ep11-13.jpg
http://gaejexperiments.files.wordpress.com/2009/12/ep11-14.jpg

Episode 11:Develop Simple Google Wave Robots using the WadRobotFramework 122

2. Right-click on the Project in the Project Hierarchy. Select Properties and then Java
Build Path. Click on Add JARs and then select the 5 JAR files from your Project WEB-
INF\lib folder.

3. Your Project Build Path should like the screenshot below.

{j’ Propertes for MyGoogleWaveRobot -Em
(MR Java Build Path T
Resource
Buildars K Smrna] ! Projects = Librames | Cirdar and Eq:\urtl
< Google JARs and class lolders on the Buld path
i sy . F_'LHH.I H-he (800 jar - MyGoogleWaveHobolbwanWEB-INF b Add JARs. . I
Py :"—"de Sk i jaonrpejar - MyGoogleWaveRobotwanWES-INF fib
it el e % i Dauth-20000617 jar - MyGoogieWeveRobotwan\WEB-INFlib Add External JAHS I
5 ~:'*“'"‘ Editor . +-bm WadRobotF ramework jar - MyGoogleWaveRobotiwar WEB-INF/lib Add Variable_ I
Javadoc Locstion -l weve-robot-api-200809 16 jar - MyGoogieWaveRobotiwar WEB-IMF lib
4 Flat ;
:ru]el;l;:':'&;:me:' +-B App Engenie SDE [App Engine (1) -1.2.6] Audd Library I
e Kkl -~ fm JRE System Library [re1.6.0_06
Server iy rary b 06| Add Class Folder. I
4 Task Repository Add External Class Foldar I
Task Tags
=1 Validabon I
Wiki T
- ok | cancel |

Click on OK to proceed. This completes your Build Path setup with the Google Wave
Robot JAR and WadRobotFramework JAR files.

Writing the Simple Robot: MyAppenderRobot :
MyAppenderRobot.java

Let us first create our Simple Robot Java class based on the WadRobotFramework. This
Simple Robot is the one that will react to a new Blip. So all we will do is to make the
robot append to the blip, when the blip is submitted. The Robot demonstrated here will be
straightforward and you can easily modify it to make it react in your own way.

As discussed, this is known as the BlipAppenderRobot and so all we need to do is to
extend the BlipAppenderRobot class in the WadRobotFramework and provide our simple
implementation.

The steps are straightforward and given below. All we need to do is write our class that
extends the org.wadael.waverobotfrmwrk.simple.BlipAppenderRobot class and
provide an implementation for the getTextToAppend method.

http://gaejexperiments.files.wordpress.com/2009/12/ep11-2.jpg

Episode 11:Develop Simple Google Wave Robots using the WadRobotFramework 123

Follow these steps:

1. Create a new Java class within the same package. The New Java Class dialog is shown
below. I have named the class MyAppenderRobot as shown below. Click on the
Browse button to select a Super Class.

if New Java Class

Java Class
Create a new Java class.

http://gaejexperiments.files.wordpress.com/2009/12/ep11-3.jpg

Episode 11:Develop Simple Google Wave Robots using the WadRobotFramework 124

2. In the Superclass Selection dialog shown below, type the word BlipAppenderRobot
(some part of it is also OK as the screenshot shows below) in the Choose a type field as
shown. This will bring up the correct Matching items i.e.
org.wadael.waverobotfrmwrk.simple.BlipAppenderRobot. Click on OK.

'l:} Superclass Selection !EI E

Choose a type: -

IBIipAppenderRDth
Matching items:
(<" BlipAppenderRobaot - org wadael waverobotfrmwrk simple

q | i

org.wadael waverobotfrmwrk. simple - MyGo.. otiwar/ WEB-INF/lib/MadRobotFramework_jar

O Ok Cancel

This will generate the code and you simply replace it with the following code listing
given below:

package com.gaejexperiments.waverobot;
import org.wadael .waverobotfrmwrk.simple.BlipAppenderRobot;
public class MyAppenderRobot extends BlipAppenderRobot {

@Override
protected String getTextToAppend(String msg) {

http://gaejexperiments.files.wordpress.com/2009/12/ep11-4.jpg

Episode 11:Develop Simple Google Wave Robots using the WadRobotFramework 125

return 'l am appending some text too";

}

@Override
protected String getRobotSelfIlntroduction() {
return 1 am the Appender Robot™;

}
+

Let us go through the code now:

1. We have extended the BlipAppenderRobot since all we want to do in this Robot is to
react to the blip and append our own Blip

2. All we need to do as part of extending the BlipAppenderRobot class is to implement
the getTextToAppend method. This method gets passed one parameter msg that is the
blip text that was submitted. So in all essence, you could inspect what the text was in the
blip submitted and then react to it. The implementation simply returns the string that it
wants to append. The WadRobotFramework’s BlipAppenderRobot will take care of
creating a Blip and appending it to the current blip.

3. We also implement an optional method named getRobotSelflntroduction. This
method returns a string and you can return something that identifies the addition of your
Robot to the Wave. So when your Robot is added as a participant and if you have
implemented the getRobotSelfintroduction method, then it will display this message
out. It is sort of announcing to the other wave participants about your presence.

That is all there is to implemented the MyAppenderRobot. If you would have studied the
earlier tutorial on writing a Google Wave Robot, you would have noticed that the
WadRobotFramework has done away with all the Event processing that you had to
handle yourself and also shielded you from methods that you need to know to create a
blip and append to it.

Configuring the MyAppenderRobot in web.xmi

We need to add the MyAppenderRobot in the <servlet/> and <servlet-mapping/>
entry to the web.xml file. This file is present in the WEB-INF folder of the project. The
necessary fragment to be added to your web.xml file are shown below.

<servlet>

<servlet-name>MyAppenderRobot</servilet-name>
<servlet-class>com.gaejexperiments.waverobot.MyAppenderRobot</serviet-
class>

</servilet>

<servlet-mapping>

<servlet-name>MyAppenderRobot</servilet-name>
<url-pattern>/_wave/robot/jsonrpc</url-pattern>

Episode 11:Develop Simple Google Wave Robots using the WadRobotFramework 126

</servlet-mapping>

In the above fragment, you will note that url-pattern /_wave/robot/jsonrpc has to be
mapped to the Robot Servlet that you have written. This is because the Google Wave
system will invoke this url to communicate with your Robot using its protocol.

Creating the MyAppenderRobot capabilities.xml files

We need an additional file to describe the capabilities of the Robot that we have written.
This file is called the capabilities.xml and it needs to reside in a certain location. You
need to create a _wave directory inside of the war directory of your project. The location
of this file is war/_wave directory.

You will need to create the _wave directory and create the capabilities.xml file over
there. The capabilities file shown below is pretty straightforward and is shown below:

<?xml version="1.0" encoding=""utf-8"?7>
<w:robot xmIns:w="http://wave.google.com/extensions/robots/1.0">
<w:capabilities>
<w:capability name="BLIP_SUBMITTED" content=""true" />
</w:capabilities>
<w:version>l</w:version>
</w:robot>

There are two elements of interest over here.

The <capability> element is of particular interest and we have registered for the
BLIP_SUBMITTED event. This is important because it informs Google Wave that
whenever a BLIP is submitted by a participated, then our Robot needs to be notified of it.
The WadRobotFramework will notify the Robot by invoking the getTextToAppend
method.

The other element is the <version> element. If you change any capabilities in your robot,
then it is recommended that before you deploy, you change the version value over here,

so that Google Wave can detect that there is a newer version and hence it can then query
for your modified capabilities if any.

Writing our MyAppenderRobot Profile Servlet (not
required but nice)

This is not a required step but it would be good practice to do so to make your Robot look
more professional. A Profile Servlet is used to tell the following about your Robot:

1. A Name for your Robot

2. A custom image for your Robot

http://wave.google.com/extensions/robots/1.0

Episode 11:Develop Simple Google Wave Robots using the WadRobotFramework 127

3. A profile page for your Robot (a URL)

If you provide these, then the Google Wave client is able to retrieve them and set it for
your Robot when it is added as a participant. This makes the Robot look more
professional.

This profile information needs to be provided by you by writing a Profile Servlet. The
Profile Servlet is nothing but extending the com.google.wave.api.ProfileServlet class
and providing simple implementations for the overwritten methods.

Follow these steps to write the Profile Servlet:

1. Create a new Java class within the same package. Name the classs
MyRobotProfileServlet and mention the Superclass as
com.google.wave.api.ProfileServlet class. Click on OK.

2. This will generate a MyRobotProfileServlet.java file.

The simplest way to generate the stubs for the required methods would be to go to

Source —> Override/Implement Methods. This will bring up the dialog box as shown
below and you only need to select the 3 methods to override as shown:

Episode 11:Develop Simple Google Wave Robots using the WadRobotFramework 128

LFoverride,/ Implement Methods

(2 @O [REEEE Desslest

------ O < dolGetHutpServietRequest, HitpServietResponse]
------ O < doPostHitpServietRequest, HitpServietR esponse)
------ O @ getCustomPrafile(Sting]

------ @ getRobotdsyatarlrl])

------ @ getRobotMame()

------ @ getRobotProfilePagelrl])

=0 ®* HitpServlet

O ®" GenericServiet

#-[]© Object

Select methods to owerride ar implement: | =t Select Al |

Ingertion paint:

I Last member j

[T Generate method comments

The format of the method stubs may be configured on the Code Template: preference page.

1 3 of 30 zselected.

lﬁ:' k. I Cancel

Click on OK. This will generate the stubs, which you can then overwrite with the code
shown below. The code is easy to understand, all we are doing is providing values for the
Name, Avatar(Image) and the Profile Page URL. Note that for the Avatar, we are
providing a file myimage.jpg present in the WAR/_wave folder. You will need to
copy an appropriate image file for yourself and make sure that it is physically
copied to the folder locally in your Eclipse project before you deploy your
application.

I have used my Appld as myinfoagent but you can replace it with your Appld.

package com.gaejexperiments.waverobot;
import com.google.wave.api.ProfileServiet;
public class MyRobotProfileServlet extends ProfileServilet {

@Override
public String getRobotAvatarUrl() {
return "http://myinfoagent.appspot.com/ wave/myimage. jpg";

http://gaejexperiments.files.wordpress.com/2009/11/ep7-14.png
http://gaejexperiments.files.wordpress.com/2009/11/ep7-14.png
http://myinfoagent.appspot.com/_wave/myimage.jpg

Episode 11:Develop Simple Google Wave Robots using the WadRobotFramework 129

}

@Ooverride
public String getRobotName() {
return ""MyRobot";

}

@0verride
public String getRobotProfilePageUrl() {
return "http://myinfoagent.appspot.com™;

}
+

Configuring the Profile Servlet

We need to add the Profile Servlet <servlet/> and <servlet-mapping/> entry to the
web.xml file. This file is present in the WEB-INF folder of the project. The necessary
fragment to be added to your web.xml file are shown below.

<servlet>

<servlet-name>MyRobotProfileServlet</servlet-name>

<servlet-
class>com.gaejexperiments.waverobot.MyRobotProfileServlet</servlet-
class>

</servlet>

<servlet-mapping>
<servlet-name>MyRobotProfileServlet</servlet-name>
<url-pattern>/_wave/robot/profile</url-pattern>

</servlet-mapping>

In the above fragment, you will note that url-pattern /_wave/robot/profile has to be
mapped to the Profile Servlet that you have written. This is because the Google Wave
system will invoke this url to get hold of your profile.

Deploying the Application

To deploy the application, you will need to first create your Application ID. The
Application Identifier can be created by logging in at http://appengine.google.com with
your Google Account. You will see a list of application identifiers already registered
under your account (or none if you are just getting started). To create a new Application,
click on the Create Application button and provide the Application Identifier as
requested. Please note this name down since you will be using it for deployment.

For e.g. | have registered an application identifier named myinfoagent.

To deploy the application, follow these steps (they should be familiar to you now):

http://myinfoagent.appspot.com/
http://appengine.google.com/

Episode 11:Develop Simple Google Wave Robots using the WadRobotFramework 130

1. Click on the Deploy Icon in the Toolbar.

2. Inthe Deploy dialog, provide your Email and Password. Do not click on Deploy
button yet.

3. Click on the App Engine Project settings link. This will lead you to a dialog,
where you need to enter your Application ID [For e.g. my Application Identifier
myinfoagent]

4. Click on OK. You will be lead back to the previous screen, where you can click
on the Deploy button. This will start deploying your application to the GAEJ
cloud. You should see several messages in the Console window as the application
is being deployed.

5. Finally, you should see the message “Deployment completed successfully”.

MyAppenderRobot in Action

Your application is going to be available at the http://yourapplicationid.appspot.com. In
my case, the application is available at http://myinfoagent.appspot.com.

You can test for the presence of your robot capabilities file by simply typing in the
following:

http://yourapplicationid.appspot.com/_wave/capabilities.xml [Replace
yourapplicationid with the Application ID that you have] and you should see the
capabilities.xml file being served up.

To test out the Robot, you need to launch the Google Wave client and login in with your
account by going to http://wave.google.com. On successful login, you will be inside the
Wave client from where you can create a new wave by clicking on the New Wave link.

When you do that, currently you are the only participant (myself) as shown in the screen
below:

http://wave.google.com/

Episode 11:Develop Simple Google Wave Robots using the WadRobotFramework 131

Google wave R | T

B

BIU-E—rTv,F-ADTH1-EEEHE'L&‘§'C**"‘? |

W oraft | Done | Cancel

Tags;: 'i' Fileg =

Click on the + sign next to your icon and you can add one or more participants as shown
below:

NOTE : Your Google Wave Robot is going to be available at
<YOURAPPLICATIONID>@appspot.com , hence | have added
myinfoagent@appspot.com as that was my application id. But you can replace it with
your application id.

http://gaejexperiments.files.wordpress.com/2009/12/ep11-5.jpg

Episode 11:Develop Simple Google Wave Robots using the WadRobotFramework 132

Add partscipants

=- Lk & G+ fib- 0 Y o]

I
Il
il

B Dt | Done | Cancal

If all goes well, you will see your Robot added as a participant (with the icon and all,
since the Profile Servlet is invoked behind the scenes by the Google Wave system). It
announces itself and this was done via the implementation that we provided in the

getRobotSelfIntroduction method.

http://gaejexperiments.files.wordpress.com/2009/12/ep11-6.jpg

Episode 11:Develop Simple Google Wave Robots using the WadRobotFramework 133

Google wave ——

2. -

B 7 U S 1T- F Ab I HI- i= . Uk & G+ Sp- 109

I
I
i
I

540 pm =

= [yeft | Done | Cancel

MyRobot: 941 pm -
&5 | am the Appander Robaot

Tags + Filles ~ |

Now | type a message “Hello” as shown below and click on the Done button, the
BLIP_SUBMITTED event is fired and our Robot gets the event i.e. the
getTextToAppend method is invoked on our Robot Java class. The method simply
appends a blip as shown below:

http://gaejexperiments.files.wordpress.com/2009/12/ep11-7.jpg

Episode 11:Develop Simple Google Wave Robots using the WadRobotFramework 134

Google wave EESIERE) rorr | 1o

4=
2.

- ﬁeph_.r B Piaq;rba:h] Unfollow = B Archive | & Span'.L! # Read | = Unread @ Trash

[Hello 943 oen
lyHobot: | am appending some text too S43pm > Ly
.
¥
MyRobot 541 pm -

! &, | am the Appender Robot

Tags: '+ Fileg -

Writing another Simple Robot: MyBlipModifierRobot :
MyBlipModifierRobot.java

We saw how easy it was to create our Simple Robot that simply appended a blip to the
wave conversation when a blip was submitted. Let us now write another Simple Robot
that will modify the Blip Text when the blip is submitted.

As discussed, this is known as the BlipModifierRobot and so all we need to do is to
extend the BlipModifierRobot class in the WadRobotFramework and provide our
simple implementation.

The steps are straightforward and given below. All we need to do is write our class that
extends the org.wadael.waverobotfrmwrk.simple.BlipModifierRobot class and
provide an implementation for the modifyBlipText method.

Follow these steps:
1. Create a new Java class within the same package. Name it

MyBlipModifierAppenderRobot as shown below and mention the superclass
as org.wadael.waverobotfrmwrk.simple.BlipModifierRobot

http://gaejexperiments.files.wordpress.com/2009/12/ep11-81.jpg

Episode 11:Develop Simple Google Wave Robots using the WadRobotFramework 135

This will create the MyBlipModifierRobot.java file and you can replace it with the
following source:

package com.gaejexperiments.waverobot;

import java.util .Date;
import org.wadael .waverobotfrmwrk._.simple._.BlipModifierRobot;

public class MyBlipModifierRobot extends BlipModifierRobot {

@Override

protected String modifyBlipText(String originalBlipText) {
returnoriginalBlipText + " [You typed this at :" + new Date().toString()
+ "1

}

@Override
protected String getRobotSelflntroduction() {
return ™l am the Blip Modifier Robot";

}
+

Let us go through the code now:

1. We have extended the BlipModifierRobot since all we want to do in this Robot is to
modify the Blip that was submitted.

2. All we need to do as part of extending the BlipModifierRobot class is to implement the
modifyBlipText method. This method gets passed one parameter originalBlipText that
is the blip text that was submitted. So in all essence, you could inspect what the text was
in the blip submitted and then modify it as needed . The implementation above appends
the text “You typed this at [DateTimeStamp]” to the originalBlipText and simply returns
that string. The WadRobotFramework’s BlipModifierRobot will take care of modifying
the Blip Text.

3. We also implement an optional method named getRobotSelfIntroduction. This
method returns a string and you can return something that identifies the addition of your
Robot to the Wave. So when your Robot is added as a participant and if you have
implemented the getRobotSelfIntroduction method, then it will display this message
out. It is sort of announcing to the other wave participants about your presence.

That is all there is to implemented the MyBlipModifierRobot. If you would have studied
the earlier tutorial on writing a Google Wave Robot, you would have noticed that the
WadRobotFramework has done away with all the Event processing that you had to
handle yourself and also shielded you from methods that you need to know to create a
blip and append to it.

Episode 11:Develop Simple Google Wave Robots using the WadRobotFramework 136

Configuring the MyBlipModifierRobot in web.xml

We need to add the MyBlipModifierRobot in the <servlet/> and <servlet-mapping/>
entry to the web.xml file. This file is present in the WEB-INF folder of the project. The
necessary fragment to be added to your web.xml file are shown below.

<servlet>

<servlet-name>MyBl ipModifierRobot</servlet-name>

<servlet-
class>com.gaejexperiments.waverobot.MyBlipModiFierRobot</servlet-class>
</servlet>

<servlet-mapping>

<servlet-name>MyBl ipModifierRobot</servlet-name>
<url-pattern>/_wave/robot/jsonrpc</url-pattern>

</servlet-mapping>

If you wish to check out this Robot in action, you can do so with the same project.
Simply replace the previous Robot’s (MyAppenderRobot) servlet entries with the one
shown above. And deploy the application following the same steps in the Deploying the
Application section. Leave the Profile Servlet and the capabilities.xml file as is because
the same applies in this case too.

Once you deploy the MyBlipModifierRobot, you should see it in action as shown below.
The first screen shows the MyBlipModifierRobot announcing itself and then the second
screen shows how it modified the blip text that | submitted by appending the TimeStamp
to it.

Episode 11:Develop Simple Google Wave Robots using the WadRobotFramework 137

G[’]QS!E wave RELERED * & Contacts 1 nbox 1-120f » & W R

ERER N

B J UST-F-Ab I HI- 3= 3= &= =. Lk & G+ Sp- 00§ |

& Dratt | Dﬂnlj Cancel

MyRobot: 948 pm =
| am the Blip Modifier Robot
Tags: (+) ' Files =

GGOSIE wave BEET = Contacts Ll vl S =8 Romin | Terms

el

- . . | ITE‘

© Reply P Playback i Unfollow | &l Archive = i3 Spaml | & Read . Unisad @ Trash
me {and MyRobot): 949 pm=
Hello [You typed this at :Wed Dec 02 16:19:25 UTC 2009]

MyRobot: S48 pm =
< | am the Blip Modifier Robot

http://gaejexperiments.files.wordpress.com/2009/12/ep11-11.jpg
http://gaejexperiments.files.wordpress.com/2009/12/ep11-12.jpg

Episode 11:Develop Simple Google Wave Robots using the WadRobotFramework 138

Conclusion

This concludes Episode 11 of the series. We saw how easy it was to write Simple Google
Wave Robots using the WadRobotFramework. Several Google Wave Robots that are out
there simply do one of the things that we have seen in this episode i.e. modify a blip’s
contents or append a blip in reaction to a blip submitted. You can get going with such
Robots by using this framework which hides you from the underlying Google Wave API.

In the next episode, we shall see how to write an Advanced Google Wave Robot that can
implement several commands. Till then, unleash those Simple Robots!

Episode 12:Writing an Advanced Google Wave Robot using WadRobotFramework 139

Episode 12 : Writing an Advanced Google Wave Robot
using WadRobotFramework

Welcome to Episode 12 of the series. This episode is an extension of the earlier episode
where we saw how to write Simple Google Wave Robots using the
WadRobotFramework. I strongly recommend that you have completed the earlier
episode and have got comfortable with the WadRobotFramework since this episode
builds on the earlier one.

To recap, the WadRobotFramework distinguishes between 2 kinds of Robots and |
summarize it again over here.

Simple Robots : These robots we covered in the earlier episode and saw how you can
write a simple robot to react to a blip by appending a new blip (BlipAppenderRobot) or
even modify the Blip Text (BlipModifierRobot).

Advanced Robots : These are of main focus in this article and I reproduce from the
earlier episode the text so that you understand what Advanced Robots are first. The
definition of Advanced Robots is per the WadRobotFramework and it is not meant to
indicate this is the final definition of it.

Advanced Robots are those that can react to instructions (or commands) in the Blips.
Here are some samples of Advanced Robots and how they would react to commands
from Blips:

1. A character Counting Advanced Robot:

Your submitted Blip Text contains : “Here is some text in the blip. Please count the
length of this message for me.” {mycountingrobot:count}.

You can write an advanced Robot (mycountingrobot) that knows how to count the
length of the message. So it gets notified when it there is a instruction (count) in the
Blip. Your Advanced Robot can then count out the characters and then either append or
modify a blip as needed.

2. A Tweeting Robot:

Your submitted Blip Text contains the following text : “{mytweetingrobot:tweet} Some
text to tweet”

You can write an advanced Robot (mytweetingrobot) that knows how to tweet the
message to Twitter. So it gets notified when it there is a instruction (tweet) in the Blip.
Your Advanced Robot can then append a blip or modify a blip saying that the message
has been tweeted.

http://gaejexperiments.wordpress.com/2009/12/03/episode-11-develop-simple-google-wave-robots-using-the-wadrobotframework/
http://code.google.com/p/wadrobotframework/
http://gaejexperiments.wordpress.com/2009/12/03/episode-11-develop-simple-google-wave-robots-using-the-wadrobotframework/
http://gaejexperiments.wordpress.com/2009/12/03/episode-11-develop-simple-google-wave-robots-using-the-wadrobotframework/
http://code.google.com/p/wadrobotframework/
http://code.google.com/p/wadrobotframework/

Episode 12:Writing an Advanced Google Wave Robot using WadRobotFramework 140

The best part of it all is that you could combine all of this into a single Robot that can
respond to one or more commands. For example, take a look at Today’s Special Robot
(see http://ppandhi.wordpress.com/2009/11/08/todays-special-robot/) that can respond to
more than one command. It can give you the quotes, day in history, word of the day,
cricket score, your daily horoscope by simply responding to the command that you type
in.

So for example, you could write a robot and give it commands like this:
1. {myrobot:doCommand1}

2. {myrobot:doCommand2}

3. {myrobot:doCommandN} and so on.

In this article, we are going to see exactly how to achieve the above command Robot that
will delegate its work to different workers who are responsible for executing the
command i.e. doing the work.

Let us get a few definitions in place first:

1. The Command Robot: This is the main class of your Robot and you need to extend the
org.wadael.waverobotfrmwrk.advanced.WithWorkersRobot. You need to have an
identifier for your robot, which is a unique ID for your Robot. Let us call it GAEJRobot.

2. Each Command Robot is capable of following instructions or commands. These
instructions are executed by the Workers.

3. A Worker is a Command implementation that performs a certain logic. For e.g.
fetching a stock quote, getting a word of a day, sending a Tweet, sending an email, etc.
Each worker will indicate what instruction or command it obeys.

As an example, say you want to write an Advanced Robot class (WithWorkersRobot)
whose identifier is named GAEJRobot that can responds to the following two
commands:

a. SendTweet
b. GiveWordOfTheDay

So, you will implement two Workers and register (add) them to the GAEJRobot class.
The two worker classes will be :

o SendTweetWorker which says that listens to an instruction named tweet and it
will implement its core logic in the doWork() method.

e GiveWordOfTheDayWorker which says that it listens to an instruction named
wotd and it will implement its core logic in the doWork() method.

http://ppandhi.wordpress.com/2009/11/08/todays-special-robot/

Episode 12:Writing an Advanced Google Wave Robot using WadRobotFramework 141

Now, in your Wave Conversation, you can give the following text in the Blip (of course
after adding the Robot as a participant).

1. {GAEJRobot:tweet}
2. {GAEJRobot:wotd}

Voila! The WadRobotFramework will then do the heavy lifting for you. It roughly works
as follows:

e When you submit a Blip, it will scan the Blip Text for the identifier and see if it
matches itself.

o If yes, it will scan out the instructions and invoke the doWork() method of the
Worker Robot that implements the instruction.

This is not all. The WadRobotFramework has thought about parameters that you may
need to pass to your Robot. For e.g. consider the following fictitious instruction that you
need to give to a Stock Quote Robot.

{StockQuoteRobot:getquote GOOG} or {StockQuoteRobot:getquote
GOOG,MSFT,ADBE,ORCL,IBM}

In short the format is as follows:

{Robotldentifier:Instruction<space>[parameters]}

So in the above two examples the parameter GOOG and the parameter string
“GOOG,MSFT,ADBE,ORCL,IBM” will be passed to the dowWork() method of your
RobotWorker that has registered with the Advanced Robot and who implements the
getquote instruction. Please read this last statement clearly with the highlighted words as
the key pieces required to build out an Advanced Robot.

Simple yet powerful and it opens up a wide range of Robots that you can start writing
today. So let me get started and demonstrate the basic flow to get an Advanced Robot up
and running which can accept 1 or more instructions. The Robot does not do anything
specific except for simply demonstrating the flow. Readers are expected to extend it with
their ideas brimming inside their minds.

To understand what we will build, it helps to take a look at the running robot as shown
below:

Episode 12:Writing an Advanced Google Wave Robot using WadRobotFramework 142

" Regly = Playback Iﬂ Lrfallosy: £l archive el Spam!

me (and MyAdvancedRobot: 531 pm =
{GAEJRohot:command1}Robot Worker 1 got the command
with parameter string : null

MyAdvancedRobot: 5350 pm -

. B | am an Advanced Robot

You will notice that | have added my robot called MyAdvancedRobot. The identifier for
the Robot is GAEJRobot and the Robot has two workers (Workerl and Worker?2)
registered with it, which implement the instructions commandl and command2
respectively.

Now when | submit the text {GAEJRobot:command1} , the doWork() method of the
Workerl is invoked. It simply accepts the command and prints out that it received the
command with no parameters passed to it.

Similarly, look at the wave conversation below:

!l me: {GAEJRohot command? abc,d 532 pm
i

|- Craft | one Delete

Here | give the command?2 to the GAEJRobot and | am also passing a string of
parameters. When I click the Done button, the doWork() method of the Worker2 is
invoked. It simply accepts the command and prints out that it received the command with
the parameter string. Now, it could have processed the parameters and performed its logic
accordingly. This demonstrates how the wiring is done by WadRobotFramework to make
your life easier in writing Advanced Google Wave Robots.

‘!! me (and MyAdvancedRobot): 033 pm -
e {GAEJHobot: command? a b c diRobot Worker 2
got the command with parameter string © a,b,c,d

Let us start writing code now. I will assume that you are fairly conversant now with the
typical project structure and requirements of writing a Google Wave Robot. If not, |
suggest that you first go through these tutorials in the following order:

o Episode 7 : Writing your First Google Wave Robot

http://gaejexperiments.files.wordpress.com/2009/12/ep12-28.jpg
http://gaejexperiments.files.wordpress.com/2009/12/ep12-29.jpg
http://gaejexperiments.files.wordpress.com/2009/12/ep12-30.jpg
http://gaejexperiments.wordpress.com/2009/11/04/episode-7-writing-your-first-google-wave-robot/

Episode 12:Writing an Advanced Google Wave Robot using WadRobotFramework 143

o Episode 11: Develop Simple Google Wave Robots using the
WadRobotFramework

Project Setup

Create a New Project or use the same project MyGoogleWaveRobot that we used in the
earlier Episode 11.

If you are creating a New project, then please make sure that you download all the JARs
from the following two locations:

http://code.google.com/p/wave-robot-java-client/downloads/list

The web page when you navigate to the above URL is shown below:

"- f wave-robot-java-client
Wave Robot Java Client Librany

Project Home Downloads Source
Search | Currentdownloads =] for | Searchl
Filename ~ Summary + Labels ™

weave-rabot-api-20090516. jar WWave Robat Java Client Library Festured

oauth-20090617 jar Qduth jar
[sanrpc.jar jsonrpc.jar
[son.jar |son.jar

Download all the above files to your machine.
The WadRobotFramework JAR file is available at the following location :

http://code.google.com/p/wadrobotframework/downloads/list

The web page when you navigate to the above URL is shown below:

http://gaejexperiments.files.wordpress.com/2009/11/ep7-6.png
http://gaejexperiments.wordpress.com/2009/12/03/episode-11-develop-simple-google-wave-robots-using-the-wadrobotframework/
http://code.google.com/p/wave-robot-java-client/downloads/list
http://code.google.com/p/wadrobotframework/downloads/list

Episode 12:Writing an Advanced Google Wave Robot using WadRobotFramework 144

romin.k.irani@gmail.com | My favortes | | Profile | Sign out

(wadrobotframework] |

= A framework for writing wave robots quickly

Project Home Downloads Wiki Issues Source
New download | Search | Curentdownloads =] for | Saan::hl
1-1of1
Filename = Summary + Labels = Uploaded Size ~ DownloadCount™
WadRobotFramework jar Version 1.0 Featured 19 hours ago 118KB 3
1-10f1

©2009 Google - Code Home - Terms of Senvice - Privacy Policy - Site Diractory - Project Hosting Halp
Hosted by (GO .Slu.: code

Download the JAR file to your machine. Once you have downloaded the 5 JAR files,
make sure that they are copied to the \WEB-INF\lib folder of your project and that the
Project Build Path is also setup with the JAR files as shown below:

{:} Properties for MyGoogleWaveRobot

MREIET = Java Build Path v v
Resource
P % Source | 1! Projects = Libraries | . Order and Export |
H- Google JARs and class folders on the buld pagh:
4 Java Buikd Path H-e (00 jar - MyGoogleWaveHobolSwan WEB-NF b Md-ﬂl-- I
Java Code _5'-'&'1'& &b jsonrpejar - MyGoogleWaveRobotwar WEB-INF lib
s 5 & auth-20090617 jer - MyGioogieWeveRobotiwar WEB-INF b Acd Egternel ARs. |
B JL-::rudEdﬂl:r % 19 WadRobotF ramework jor - MyGoogleWaveRobothwar WEB-INF/lib Add Variable. . |
SENECKNY L ACOuOn - weve-robot-api-200809 16 jor - MyGoogieWaveRobotwarWEB-INF /it
:ﬂese::;“;j::; E-mk App Engine SDK [App Engine (1] - 1.2.6] Add Library. I
i i £
e i m JRE System Library [jre1.6.0_06] A Elne il |
& Task Repository Add Extenel Class Folder |
Task Tags
& Validabon - o I
WikiTesa =
IETTHE I
[HigrerE A I

http://gaejexperiments.files.wordpress.com/2009/12/ep11-13.jpg
http://gaejexperiments.files.wordpress.com/2009/12/ep11-2.jpg

Episode 12:Writing an Advanced Google Wave Robot using WadRobotFramework 145

Writing the Advanced Robot : MyAdvancedRobot.java

The first step is to create a Java class. Call it MyAdvancedRobot.java. The source code is
listed below:

package com.gaejexperiments.waverobot;
import org.wadael .waverobotfrmwrk.advanced.WithWorkersRobot;
public class MyAdvancedRobot extends WithWorkersRobot {

public MyAdvancedRobot() {
super();

//This will process "commandl*®
addRobotWorker (new Workerl1());

//This will process "command2*®
addRobotWorker (new Worker2());

}

@0verride
public String getRobotldentifier() {
return "GAEJRobot";

}

@Override
protected String getUsage() {
return ""Advanced Robot commands : commandl and command2';

}

@Override
protected String getRobotSelfIntroduction() {
return "l am an Advanced Robot';

}

Episode 12:Writing an Advanced Google Wave Robot using WadRobotFramework 146

Let us dissect the code now:

1. Our Advanced Robot class MyAdvancedRobot extends the WithWorkersRobot
class, which is required for creating the Advanced Robots with the
WadRobotFramework.

2. The WithWorkersRobot class constructor uses a method called
addRobotWorker(...) to add one or more workers to it. Remember each worker will
execute or do its job as per the instruction that it obeys. So we are going to have two
workers : Workerl and Worker2 which we are adding to our AdvancedRobot. We will
get to the listing of the Worker1 and Worker?2 later but it is sufficient to keep in mind,
that Worker1 class will perform the work required with command1 instruction is given
in the Blip and Worker2 class will perform the work required when command?2
instruction is given in the Blip. To recap, as you add more workers, you will need to add
them here in the constructor using the addRobotWorker method.

3. The getRobotldentifier() method is used to return the string that is the unique identifier
of your Robot. This is used to distinguish Robots in the same Wave. The identifier if you
recollect is going to be used by the other participants in the wave to give instructions to
your Robot. As mentioned, the format in the Blip to give an instruction to your robot will
be like this:

{Robotldentifier:Instruction<space>[parameters]}

Each Instruction is implemented by a Worker. For e.g. commandl will be implemented
by Workerl and command?2 will be implemented by Worker2.

So to invoke Workerl, we have to say { GAEJRobot:command1} in the Blip and submit
it. Hence we return GAEJRobot in the getRobotldentifier() method and this will be the
unique way in which we identify this Robot

4. The getUsage() method is used to return a string that will be displayed to the
participant when they type /help in the start of the Blip. This is useful to give a list of
possible instructions that your Advanced Robot implements. In our case here, we are
implementing two instructions and hence we have returned some string. But you can give
an elaborate help string stating detailed command text, sample parameters, etc.

5. Finally, we have the getRobotSelflntroduction() method. This is not mandatory but it
IS nice to announce to the particpants when you (Robot) gets added to the wave as a
participant. Simply return a String that you would like to announce to the other (existing)
participants in the Wave.

Implementing the Workers

Episode 12:Writing an Advanced Google Wave Robot using WadRobotFramework 147

We are now going to implement the Workers i.e. Workerl and Worker2. The code is
identical for both of them and it is listed below:

Workerl.java

package com.gaejexperiments.waverobot;
import org.wadael .waverobotfrmwrk.advanced.RobotWorker;

import com.google.wave.api .Blip;
import com.google.wave.api .Event;
import com.google.wave.api .RobotMessageBundle;

public class Workerl implements RobotWorker {
public String getlnstruction() {

return "‘commandl®;

}

public boolean doWork(RobotMessageBundle bundle, Blip blip, Event evt,
String params) {

blip.getDocument() -append(*'Robot Worker 1 got the command with
parameter string : "+ params);

return true;

}

public String getDescription() {
return ""Robot Worker 1';

3
3

Worker2.java

package com.gaejexperiments.waverobot;
import org.wadael .waverobotfrmwrk.advanced.RobotWorker;

import com.google._wave.api -Blip;
import com.google.wave.api .Event;
import com.google.wave.api .RobotMessageBundle;

public class Worker2 implements RobotWorker {

public boolean doWork(RobotMessageBundle bundle, Blip blip, Event evt,
String params) {

blip.getDocument() -append(*'Robot Worker 2 got the command with
parameter string : "+ params);

return true;

}

Episode 12:Writing an Advanced Google Wave Robot using WadRobotFramework 148

public String getDescription() {
return ""Robot Worker 2';

}
public String getlnstruction() {

return "‘command2*;

}
b5

Let us go through the code of one of them and you will be able to understand it:

1. To recap, a Worker implements an instruction or a single command. Each Worker
class needs to implement the RobotWorker interface in the WadRobotFramework.

2. It needs to implement the getinstruction() method which returns a String. This is the
instruction that the Worker will obey or perform. In our case, the commandl is being
done by Worker1 class and the command2 is being done by Worker2 class respectively.
So when someone submits {GAEJRobot:command1} in the Blip, the doWork()
implementation of the Worker1 class will be invoked and if they submit
{GAEJRobot:command2} in the Blip, the doWork() implementation of the Worker2
class will be invoked.

3. It needs to implement the doWork() method. This method is the heart or the main
implementation of the Worker. Here you will place all your processing logic. Notice that
since this is an Advanced Robot, it is assumed that you would even like to make use of
the Google Wave API classes directly. So you are passed in instances of
RobotMessageBundle, Blip and Event classes. The last parameter passed is params and
it represents any parameters passed to the robot.

You will notice in the implementation that we have done for the Worker, that we simply
Append to the Blip Text saying that the Worker got its command and notice that we also
print out the Parameter String. So if you logic depends on the values of the parameters
passed, you can parse out the parameters here itself and perform your logic.

That is all we need to do as far as writing Java code is concerned. Of course we have the
other mandatory files that we need to create, which we will cover quickly now:

Configuring the MyAppenderRobot in web.xmi

We need to add the MyAdvancedRobot in the <servlet/> and <servlet-mapping/>
entry to the web.xml file. This file is present in the WEB-INF folder of the project. The
necessary fragment to be added to your web.xml file are shown below.

<servlet>
<servlet-name>MyAdvancedRobot</servilet-name>

Episode 12:Writing an Advanced Google Wave Robot using WadRobotFramework 149

<servlet-class>com.gaejexperiments.waverobot.MyAdvancedRobot</serviet-
class>

</servilet>

<servlet>

<servlet-name>MyRobotProfileServlet</servlet-name>

<servlet-
class>com.gaejexperiments.waverobot.MyRobotProfileServlet</servlet-
class>

</servlet>

<servlet-mapping>

<servlet-name>MyAdvancedRobot</servilet-name>
<url-pattern>/_wave/robot/jsonrpc</url-pattern>

</servlet-mapping>

<servlet-mapping>
<servlet-name>MyRobotProfileServlet</servlet-name>
<url-pattern>/_wave/robot/profile</url-pattern>

</servlet-mapping>

Notice that we also have the ProfileServlet configured here, which is a good and
recommended thing to have for your Robot. The ProfileServlet class is covered in the
next section.

ProfileServlet.java

The implementation is straightforward and contains the Applicationld that I have used for
my AdvancedRobot. You can replace it with your id.

package com.gaejexperiments.waverobot;
import com.google.wave.api -ProfileServlet;
public class MyRobotProfileServlet extends ProfileServilet {

@Override
public String getRobotAvatarUrl() {
return ""http://myinfoagent.appspot.com/ wave/myimage. jpg";

}

@Ooverride
public String getRobotName() {
return ""MyAdvancedRobot";

}

@Override
public String getRobotProfilePageUrl() {
return ""http://myinfoagent.appspot.com™;

}
+

http://myinfoagent.appspot.com/_wave/myimage.jpg
http://myinfoagent.appspot.com/

Episode 12:Writing an Advanced Google Wave Robot using WadRobotFramework 150

Creating the MyAdvancedRobot capabilities.xml files

We need an additional file to describe the capabilities of the Robot that we have written.
This file is called the capabilities.xml and it needs to reside in a certain location. You
need to create a _wave directory inside of the war directory of your project. The location
of this file is war/_wave directory.

You will need to create the _wave directory and create the capabilities.xml file over
there. The capabilities file shown below is pretty straightforward and is shown below:

<?xml version="1.0" encoding=""utf-8"?7>

<w:robot xmIns:w="http://wave.google.com/extensions/robots/1.0">
<w:capabilities>

<w:capability name="BLIP_SUBMITTED" content=""true" />
</w:capabilities>

<w:version>l</w:version>

</w:robot>

Deploying the Application

To deploy the application, you will need to first create your Application ID. The
Application Identifier can be created by logging in at http://appengine.google.com with
your Google Account. You will see a list of application identifiers already registered
under your account (or none if you are just getting started). To create a new Application,
click on the Create Application button and provide the Application Identifier as
requested. Please note this name down since you will be using it for deployment.

For e.g. | have registered an application identifier named myinfoagent.
To deploy the application, follow these steps (they should be familiar to you now):

1. Click on the Deploy Icon in the Toolbar.

2. Inthe Deploy dialog, provide your Email and Password. Do not click on Deploy
button yet.

3. Click on the App Engine Project settings link. This will lead you to a dialog,
where you need to enter your Application ID [For e.g. my Application Identifier
myinfoagent]

4. Click on OK. You will be lead back to the previous screen, where you can click
on the Deploy button. This will start deploying your application to the GAEJ
cloud. You should see several messages in the Console window as the application
is being deployed.

5. Finally, you should see the message “Deployment completed successfully”.

MyAdvancedRobot in Action

http://wave.google.com/extensions/robots/1.0
http://appengine.google.com/

Episode 12:Writing an Advanced Google Wave Robot using WadRobotFramework 151

Your application is going to be available at the http://yourapplicationid.appspot.com. In
my case, the application is available at http://myinfoagent.appspot.com.

You can test for the presence of your robot capabilities file by simply typing in the
following:

http://yourapplicationid.appspot.com/_wave/capabilities.xml [Replace
yourapplicationid with the Application ID that you have] and you should see the
capabilities.xml file being served up.

To test out the Robot, you need to launch the Google Wave client and login in with your
account by going to http://wave.google.com. On successful login, you will be inside the
Wave client from where you can create a new wave by clicking on the New Wave link. I
then add the myinfoagent@appspot.com, which is our AdvancedRobot to the Wave as a
participant as shown below:

GD Ug le wave N3 wvigation Contacts
preview
= a X
Add participants
(myinfnagent@appsd fyAdvancedRobot
Myﬁ«dvanceanEnt = E E E- Lk & G+ - 1 9 !
447 pm - 3
L
<
[Ceatt : Done | Cancel

' Files = |

http://gaejexperiments.files.wordpress.com/2009/12/ep12-22.jpg
http://wave.google.com/

Episode 12:Writing an Advanced Google Wave Robot using WadRobotFramework 152

On addition, the AdvancedRobot will announce itself to the Participants. This is the
method getRobotSelflntroduction() that we implemented in the
MyAdvancedRobot.java class. The output is shown below:

GC‘ DS le wave [EELEENEY Romi
Frrend b W

.. -

BJ7 US1T- F-Ab T Hi- i= 5B & B Lk & G+ f5- W1 9

455 pm =
v
¥
B Orail | Dome | Cancel
MyAdvancedRobaor: 455 pm -
| am an Advanced Robot
Tags: |+ | Files ~

Now, we type in the message /help in the beginning of the Blip and submit it as shown
below:

http://gaejexperiments.files.wordpress.com/2009/12/ep12-23.jpg

Episode 12:Writing an Advanced Google Wave Robot using WadRobotFramework 153

Inbox 1 - 10 o6f = & W:IN

GUDS]E wave RRERRERE Contacts

T

Thelp - & x

8. -

BJZ7 U®S+T-F A H-i= 5 & - Uk & G+ f5- 0 ¢
/help| 456 pm -

B cratt | Done | Cancel

MyAdvancedRobot: 455 pm
& |am an Advanced Robot

Tags: + J Files ~ {

When submitted, the method getUsage() of the MyAdvancedRobot class is invoked and
it displays the commands and any help instruction that you provided in there.

http://gaejexperiments.files.wordpress.com/2009/12/ep12-24.jpg

Episode 12:Writing an Advanced Google Wave Robot using WadRobotFramework

Gm,gle wave BEEEE Comarts
help e BB ¢
+

! L'l\. =

s Repl b.mm -] ok | B Acchibes f_ismm B e | Linpeed

{ '.hall:l VAR pm oW = |
KyAdvancedRabor Advanced Robot commands - command] and LET prv = ’..:

5 command?

MyfsvancedRobot
B | arnan Advanced Robot

Tags: |+ Fies =

154

The next thing we do is give a command to the first Worker as shown below and click on

the Done button.

{GAEJRobot:command1} 5:30 prn -

|- Craft | Done | Cancel

This will invoke the doWork() method on the Worker1 class since this class has

indicated that it implements command1 as mentioned in the getinstruction() method of

the class. The response of the Worker is shown below:

http://gaejexperiments.files.wordpress.com/2009/12/ep12-25.jpg
http://gaejexperiments.files.wordpress.com/2009/12/ep12-27.jpg

Episode 12:Writing an Advanced Google Wave Robot using WadRobotFramework 155

b Regly B Playback Iﬂ nfalloyy El archive e Spam! .

me {and MyAdvancedRobot): 531 pm =
{GAEJRohot:command1}Robot Worker 1 got the command
with parameter string : null

MyAdvancedRobot: 530 prm =
&0 am an Advanced Robot

As you can see we did not pass any parameters to it, so it printed out null.

Now, let us invoke the second Worker as shown below and notice that we are passing
parameters to it now:

ll me: {GAEJRobot command2 a,l:n,u::,d[} 32 pm
]

|_ Draft | Done Delete

When we click on Done, the doWork() method on the Worker2 class since this class has
indicated that it implements command2 as mentioned in the getinstruction() method of
the class. The response of the Worker is shown below:

ll me {and MyAdvancedRobot): 533 pm
e IGAEJRobot:command? a,b,c,diRobat ¥Worker 2
got the command with parameter string - a,b,c d

Notice that the parameter string was now passed and successfully displayed. You can
easily parse out the String and perform your logic.

Conclusion

This concludes the 2-part tutorial on creating Simple and Advanced Robots using the
WadRobotFramework. The framework takes away much of the API that you need to
know to get going with the Wave API and instead lets you focus on the core of our Robot
logic. The framework is still is its early stages and would do with some feedback from
you.

http://gaejexperiments.files.wordpress.com/2009/12/ep12-28.jpg
http://gaejexperiments.files.wordpress.com/2009/12/ep12-29.jpg
http://gaejexperiments.files.wordpress.com/2009/12/ep12-30.jpg

Episode 13: Using the Blobstore Java API 156

Episode 13: Using the Blobstore Java API

Welcome to Episode 13 of this series. It has been a while since the last episode and to
compensate | thought why not cover something that has just been released. In keeping
with that line, this episode will cover the recently released Blobstore API in the 1.3.0
release of the Google App Engine SDK.

Using the Blobstore API, we shall cover how to build an application that mimics several
sites that allow you to upload a picture and send a Tweet. The Tweet will then contain a
link back to the image that you uploaded. Blobstore APl now makes all this possible
along with several other applications that you could envision like file sharing, document
management, etc.

What is the Blobstore API?

The Blobstore API allows your application to store blobs of information, where each blob
can be upto 50MB in size. These blobs are typically large files like video and images.
This is different from the datastore API that does not allow for saving objects upto this
large size. The API documention for the Blobstore API is provided here.

The Blobstore API provides two types of functions:

e An ability to upload and save the blob automaticallyThe BlobstoreService which
is provided by the com.google.appengine.api.blobstore.BlobstoreService allows
us to specify a URL where users can upload their large files. You can think of this
url as the action element in the HTML form. The implementation at this URL is
internal to the BlobstoreService. But what it does is significant. It will extract out
the file contents that you uploaded and store it as a Blob in the database. Each
blob that is stored in the database is associated with the a Blob Key. This Blob
key is then provided to your url and you can then use the Blob Key to do anything
within your application. In our case, we form a url that is tweeted to the users who
can then view the picture that we uploaded.

e An ability to serve or retrieve the blob.The BlobstoreService also provides an
ability to serve or retrieve the blob that was saved successfully. It will provide the
blob as a response that could then use as a source in an element for
example. All you need to do is provide it the Blob Key and the response stream
and in return, it will provide the content properly encoded as per its type that you
could then use.

It will be clear as we work out the application in the next few sections.
Note: The Blobstore API is enabled in your application only if you enable “billing”

for your applications. What this means is that you can try out the API with your local
development server but if you deploy the same on the App Engine cloud, your

http://gaejexperiments.files.wordpress.com/2009/12/ep13-4.jpg
http://gaejexperiments.files.wordpress.com/2009/12/ep13-4.jpg
http://gaejexperiments.files.wordpress.com/2009/12/ep13-4.jpg
http://gaejexperiments.files.wordpress.com/2009/12/ep13-4.jpg
http://code.google.com/appengine/docs/java/blobstore/overview.html

Episode 13: Using the Blobstore Java API 157

application will not be able to use the API if it has not been enabled for “billing”. So keep
that in mind before leaping with joy that your new application enabled with large file
uploads, etc is now ready to start functioning in the cloud. In case you try to use any
Blobstore APIs without enabling billing in your application, you will get a
FeatureNotSupported exception and the text as: “The Blobstore API will be enabled
for this application once billing has been enabled in the admin console.”

Prerequisites

Google announced the release of version 1.3.0 of the App Engine SDK for both Python
and Java. We need to set our development environment with this release of the SDK
since the Blobstore API was released in this version.

So the first thing that you need to do is to download the latest release 1.3.0 of the App
Engine SDK and upgrade your Eclipse development environment with that. There are
two ways you can do that:

a. Use the Update features of Eclipse to download and install the latest SDK

b. Download the SDK from the following link. Make sure you download the Java SDK.
Further to the download, inside of your Eclipse IDE, go to Windows -> Preferences and
then Google -> App Engine SDK. Click on Add and provide the path to the expanded
1.3.0 distribution on your machine.

I had covered in detail how to upgrade your SDK for your Eclipse IDE when new
releases come out. This was covered in Episode 5, in which we upgraded from 1.2.5 ->
1.2.6. Readers are advised to take a look at it in case they are not familiar. The process
remains the same.

Tweet My Picture in Action

The application that we are going to develop is called Tweet My Picture. There are
several sites now that allow you to upload a picture to their site and then send a Tweet.
The Tweet contains a simple description and the url to the picture. An example is
TwitPic. | thought the Blobstore API now actually makes an application of this kind way
too easy to create, so why not demonstrate that. We will not be creating a polished
looking application but rather demonstrating the API and showing that it works.
Remember that all the instructions later on deploying and running this application will
happen in the local development server and not the live App Engine site because | need to
enable billing in order to utilize the Blobstore Service. But the best part is that the local
development server works fine, so we can do our complete development and testing on it.
Then you are the best judge of writing your own application that utilizes the Blobstore
API and making it a billable application when you go live.

Before we get down to code, we should see the end result.

http://googleappengine.blogspot.com/2009/12/app-engine-sdk-130-released-including.html
http://code.google.com/appengine/downloads.html
http://gaejexperiments.wordpress.com/2009/10/29/episode-5-upgrading-to-google-app-engine-1-2-6/
http://www.twitpic.com/

Episode 13: Using the Blobstore Java API 158

Assuming that | have started my local development server, | navigate to the index.jsp
page that is shown below:

This will display a simple page, where you provide the following information:

e Your Twitter Userld and Password
e The image file that you wish to upload. Simply click the Choose File button and
select a file to upload.

g = Ol

] Tiwesat My Picture st
g ¢ M 1 hipilocathost BEBA indax 5| [2 UI:J:;' G- F-

Tweet My Picture

Upload a picture and send an automatic Tweet

Twitter User 1d - |y Twitterllseid

Twitter Password : |MyTwitierfaspwoed

File Chose Fils | psonuss oo i Pecluie

Then when you click the Upload Picture button, what happens is the following:

1. The file contents that you uploaded will be stored by the Blobstore API into the
datastore automatically for you. It will provide you with the Blob Key for the blob that
was saved.

2. We use the Blob Key to create a simple Tweet message containing the link. And then
we use Twitter4J to send the Tweet.

3. Finally a page is displayed indicating the status of the Tweet, the Tweet contents and it
also shows the image that you uploaded. This page is shown below:

http://yusuke.homeip.net/twitter4j/en/index.html

Episode 13: Using the Blobstore Java API 159

™ Twamt My Pictura - S

= & # T hipolocalhost 3388 submiipi 5'_.1-"|,-I|:! * I,I'.IJ e O~ F-

Tweet My Picture

Submission Result: Successfully updated the status to [Check out my picture
at : http:/localbost: 8888 viewpic.jspTblob-kev=X-HVTBCASICVvPdiwEzlw].

Now, switch to your Twitter client and you will notice that the Tweet has been posted. A
sample screenshot is shown below.The url is pointing to the localhost but that is because |
wish to do my testing locally and | have not enabled billing for my live application at the
appspot.com domain.

blob-key=X-AV7BCASICVvPdiwEZOW

E, i = o Fromn T iard |
> minutes ago from Twiterad

' IRomin Check out my picture at - http://localhost:8888/viewpic _jsp?

Clicking on the Tweet link, takes you back to an page that shows you the picture as
below:

Episode 13: Using the Blobstore Java API 160

[} Tweet My Picture - V...
« C # ¢ hip://localhost:8888/ » VY, & O- &-

Nice, isn’t it? Do not limit yourself only to this example. You can now start thinking on
creating serious document management, file sharing, etc applications and use the App
Engine infrastructure to host it. So let’s get coding now.

Implementing Tweet My Picture

The first thing to do is to create a New Google Web Application Project. Follow these
steps:

1. Either click on File = New —> Other or press Ctrl-N to create a new project. Select
Google and then Web Application project. Alternately you could also click on the New
Web Application Project Toolbar icon as part of the Google Eclipse plugin. Please make
sure that you have installed the latest 1.3.0 version of the App Engine SDK and are
using that as the API for this version. Shown below is the New Project screenshot
where you should see an additional SDK 1.3.0 and need to select that.

Episode 13: Using the Blobstore Java API 161

Iy T—————— ol x|

Create a Web Application Project
Enter a name for the project
Project name:

Package: (&.g. com example myproject)
Location
(% Create new project in workspace
(" Create new project in

[Crgaec e |

Google SDKs

v Use Google Web Toolkit
" Use default SDK (GWT - 1.7.0) Configure SOKs. .
(" Use speacific SDIC | W 70 J

[+ Use Google App Engine
(" Use default SDK {appengine-java-sdk-1.3.0 - 1.3.0) Configure SDKs
(& Usa specific SDK: |appengine-java-sdk-1.3.0- 1.3.0 :I
App Engine (1) - 1.2.6

[pE ava-sd]

':_"' I Eir I Cancal |

2. In the New Web Application Project dialog, deselect the Use Google Web

Toolkit and give a name to your project. | have named mine GAEJExperiments. |
suggest you go with the same name so that things are consistent with the rest of the
article, but I leave that to you. In case you are following the series, you could simply
use the same project and skip all these steps altogether. You can simply go to the
next part i.e. the Servlet code.

3. Click on Finish. This will generate the project and also create a sample Hello World
Servlet for you. But we will be writing our own Servlet.

Adding Twitter4J Jar to the Classpath and WEB-
INF\lib folder

Since we will be using the excellent Twitter4J library for posting to Twitter, you need to
download the latest version of the JAR file. Download it from here. | have used
twitter4j-2.0.10.jar. You need to copy this file to the WEB-INF\lib folder of the project.
Also add the JAR file to the Build Classpath of the Eclipse project.

http://yusuke.homeip.net/twitter4j/en/index.html

Episode 13: Using the Blobstore Java API 162

index.jsp

The first page is the index.jsp page. This is a simple page that will have a form that
accepts the Twitter Userld/Password along with the file to be uploaded. The code is
shown below. Just a quick note that all the JSP files will go into the war folder of the
project.

<%@ page
import="‘com.google.appengine.api.blobstore.BlobstoreServiceFactory" %>
<%@ page import="com.google.appengine.api.blobstore.BlobstoreService"
%>

<%
BlobstoreService blobstoreService =
BlobstoreServiceFactory.getBlobstoreService();
%>
<html>
<head>
<title>Tweet My Picture</title>
</head>
<body>

<h1>Tweet My Picture</h1>
<hr/>
<h2>Upload a picture and send an automatic Tweet</h2>
<form action="<%= blobstoreService.createUploadUrl(**/upload'™)
%>"" method=""post" enctype="multipart/form-data">
Twitter User Id : <input type="text"
name=""twitter_userid'"/>

Twitter Password : <input type="p"
name=""twitter_password"'/>

File :
<input type="text" name="filename'"/>
<input type="file" name="myTweetPic"/>
<input type="submit" value="Upload Picture'/>
</form>
</html>

Episode 13: Using the Blobstore Java API 163

Let us look at the main points in the code above:

1. It has a HTML <form/> that accepts the twitter userid and password. We also have an
<input/> element of type file, that allows the user to select the file from his machine to be
uploaded.

2. The action attribute of the FORM is where you should pay attention. The Form action
as you know submits the request parameters to a particular server side resource like a
Servlet/JSP, etc. The action here is created via a helper function provided by the
Blobstore API itself. Notice that first we are getting an instance of the Blobstore service
via the BlobstoreServiceFactory as shown below:

BlobstoreService blobstoreService =
BlobstoreServiceFactory.getBlobstoreService();

Then we are using a helper function called

blobstoreService.createUploadURL (“SUCCESS_PATH?) for the action. Let us spend
some time on that since it is important and will help us understand what the
BlobstoreService does behind the scenes.

If you launch your local development server and navigate to the index.jsp page and do a
view source on the HTML, you will find that the action that is generated by the
createUploadURL(...) method looks something like this:

action=""/_ah/upload/agp0d2VIdG15cGljchsLEhVfX0Jsb2JVcGxvYWRTZXNzaW9
uXxX18YEgw”. You may wonder where did our SUCCESS_PATH i.e. /upload go
away. Let me explain:

When you do an upload, the request hits an internal URL in the App Engine
infrastructure that will do the following:

1. The BlobstoreService implementation inside of AppEngine will extract out the Blob
and save it for you automatically in the datastore. You do not have to do anything special.
It does this for the all the Blobs that are present in the HT TP Request stream.

2. On successfully saving these blobs into the stores, what it has with itself now are one
or more name value pairs i.e. a Map. The name is the request parameter name for your
blob. For e.g. in our index.jsp, the file that we uploaded had the name of myTweetPic i.e.
the form element. And the value will be the Blob Key that you can use to retrieve the
Blob. It will put this map into the Request stream i.e. it will augment the Request stream
with this map and then invoke your SUCCESS_PATH url. The SUCCESS_PATH url is
the end point or in our case the Servlet.

This Servlet can then extract out each of the Blobs that were saved by inspecting the Map
and do further action. In our case, we will be posting a link to Twitter. This ervlet is what
Owe shall see next.

Episode 13: Using the Blobstore Java API 164

Upload Servlet

The Upload Servlet code is listed below.

package com.gaejexperiments. twitter;

import java.io. lOException;
import java.util _Map;

import java.util._logging.Level;
import java.util.logging.Logger;

import javax.mail.Session;

import javax.servlet.ServletException;

import javax.servlet.http.HttpServilet;

import javax.servlet.http.HttpServletRequest;
import javax.servlet._http.HttpServletResponse;

import twitter4j.Status;
import twitter4dj.Twitter;

import com.google.appengine.api .blobstore.BlobKey;
import com.google.appengine.api.blobstore.BlobstoreService;
import com.google.appengine.api -blobstore.BlobstoreServiceFactory;

@SuppressWarnings(*'serial')

public class Upload extends HttpServilet {
private final static Logger _logger =

Logger .getLogger(Upload.class.getName());
private BlobstoreService blobstoreService =
BlobstoreServiceFactory.getBlobstoreService();

public void doPost(HttpServletRequest req, HttpServletResponse res)
throws ServletException, I10Exception {

Map<String, BlobKey> blobs =
blobstoreService.getUploadedBlobs(req);
BlobKey blobKey = blobs.get("'myTweetPic');

if (blobKey == null) {
res.sendRedirect("'/™");
}

else {
String strStatus = "'';
try {
String twitter_userid =
(String)req.-getParameter("twitter_userid');
String twitter_ password =
(String)req.getParameter("twitter_password™);
_logger.info(""Userld:"+twitter_userid + " ,
Password:"+twitter_password) ;
Twitter twitter = new
Twitter(twitter_userid, twitter_password);

Episode 13: Using the Blobstore Java API 165

String strTweet = "Check out my picture at : "+ "<a
href="http://1ocalhost:8888/viewpic.jsp?blob-
key="+blobKey.getKeyString">http://localhost:8888/viewpic. jsp?blob
-key=""+blobKey.getKeyString();

Status status = twitter.updateStatus(strTweet);

strStatus = "Successfully updated the status to [+
status.getText() + "]-";

_logger.info(strStatus);

catch (Exception ex) {

strStatus = "Could not update Twitter Status : "+
ex.getMessage();

_logger.log(Level .WARNING, strStatus);

}

finally {

res.sendRedirect(*'/submitpic. jsp?blob-

key="tblobKey.getKeyString() + "&status="+strStatus);

}

Let us go through the main points in the Upload Servlet code:

1. The Servlet implementation is the doPost() method. This method was invoked by the
Blobstore Service after the blobs were successfully saved in the datastore.

2. As mentioned, the Blobstore Service augments the Request stream with a Map of
successfully saved Blobs. It also provides a helper method that we can use to extract out
this Map instance from the request stream. The code is shown below:

Map<String, BlobKey> blobs = blobstoreService.getUploadedBlobs(req);

3. The next thing to do is to get the Blob Key for our saved Blob. The Blob Key is unique
and will be used to retrieve the Blob as we shall see later on in the viewpic.jsp code. The
Key that we will use is the same as the input parameter name for our file blob that we
provided in the FORM i.e. index.jsp.

BlobKey blobKey = blobs.get(*myTweetPic”);
4. We do a simple check to verify if the blobKey instance is not null. If not, we create a
status update for twitter giving a url that points to the viewpic.jsp page which is passed

the blob-key request parameter as shown below:

String strTweet = “Check out my picture at : ” +
“http://localhost:8888/viewpic.jsp?blob-key="+blobKey.getKeyString();

http://localhost:8888/viewpic.jsp?blob-key=
http://localhost:8888/viewpic.jsp?blob-key=
http://localhost:8888/viewpic.jsp?blob-key=%22+blobKey.getKeyString

Episode 13: Using the Blobstore Java API 166

5. Finally, we using Twitter4J to post out tweet using the twitter id and password that we
provided.

The status of our upload and tweet is then displayed by navigating to the submitpic.jsp
page that simply shows the status and the picture that we uploaded.

submitpic.jsp

This JSP file is invoked by our Upload Servlet to display the status of our Tweet to
twitter and the image that we uploaded as discussed in the previous section. You will
notice an interesting thing over here and that is the element. The source attribute
of the element is a servlet residing at an endpoint /serve. All it needs is the blob-
key request parameter. We shall see this servlet in a moment.

<%@ page
import=""com.google.appengine.api.-blobstore.BlobstoreServiceFactory" %>
<%@ page import="com.google.appengine.api.blobstore.BlobstoreService"
%>

<html>
<head>
<title>Tweet My Picture - Submission</title>
</head>
<body>

<hl1>Tweet My Picture</h1>
<hr/>
<h3>Submission Result: <%=request.getParameter(*'status')%></h3>
<%
String blobKey = (String)request.getParameter('blob-key™);
iT (blobKey = null) {%>
You uploaded :

<img width="200" height="150" src=""<\=""<a
href="http://1ocalhost:8888/serve?blob-
key="+blobKey">http://localhost:8888/serve?blob-key=""+blobKey
%>"">

<% }%>
</body>
</html>

Serve Servlet

This Servlet uses another helper function of the BlobStoreService. The method is called
serve and it takes two parameters as shown in the listing below. The blob Key and the
HTTP response stream. Note that we pass it the Blob Key that we got after saving our
blob. What the serve method will do is that it will automatically retrieve the Blob from
the Datastore using the Blob Key that was provided to it. Once it retrieves the Blob

http://localhost:8888/serve?blob-key="
http://localhost:8888/serve?blob-key="
http://localhost:/

Episode 13: Using the Blobstore Java API 167

successfully, it will take the content of the Blob, set the correct MIME types and insert
that into the HT TP Response stream. You can the use the Response stream to assign it as
a source for the HTML element. We did exactly that in the submitpic.jsp file and
we do the same in the viewpic.jsp file that will be invoked when someone clicks on the
Twitter post.

package com.gaejexperiments. twitter;
import java.io. lOException;

import javax.servlet.http.HttpServilet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

import com.google.appengine.api.blobstore.BlobKey;
import com.google.appengine.api.blobstore.BlobstoreService;
import com.google.appengine.api -blobstore.BlobstoreServiceFactory;

@SuppressWarnings(*'serial'")

public class Serve extends HttpServilet {
private BlobstoreService blobstoreService =
BlobstoreServiceFactory.getBlobstoreService();

public void doGet(HttpServletRequest req, HttpServletResponse resp)
throws 10Exception {
BlobKey blobKey = new BlobKey(req.getParameter("'blob-key'));
blobstoreService.serve(blobKey, resp);

viewpic.jsp

As discussed earlier, the Tweet that we post has the following format:

Check out my picture at http://localhost:8888/viewpic.jsp?blob-key=A BLOB_KEY

This will invoke the viewpic.jsp file with a request parameter named blob-key which
contains the Blob key value. So all we have to do i to create a element, whose
source attribute will be served via the /serve endpoint as shown below. Simple isn’t it ?

http://localhost:8888/viewpic.jsp?blob-key=%22+blobKey.getKeyString

Episode 13: Using the Blobstore Java API 168

<%@ page
import="'com.google.appengine.api.blobstore.BlobstoreServiceFactory" %>
<%@ page import="com.google.appengine.api.blobstore.BlobstoreService"
%>

<%

BlobstoreService blobstoreService =
BlobstoreServiceFactory.getBlobstoreService();

String blobKey = (String)request.getParameter('blob-key™);
%>
<html>

<head>

<title>Tweet My Picture - View</title>

</head>

<body>

<img width="200" height="150" src=""<\=""<a
href="http://localhost:8888/serve?blob-
key="+blobKey">http://localhost:8888/serve?blob-key=""+blobKey
%>"">

</body>
</html>

Configuring the Servlets

We need to add both the Upload Servlet and the Serve Servlet with their appropriate
entries for <servlet/> and <servlet-mapping/> in the web.xml file. This file is present in
the WEB-INF folder of the project. The necessary fragment to be added to

your web.xml file are shown below.

<servlet>
<servlet-name>Upload</servlet-name>
<servlet-class>com.gaejexperiments.twitter.Upload</servlet-class>
</servlet>
<servlet>
<servlet-name>Serve</servlet-name>
<servlet-class>com.gaejexperiments.twitter.Serve</servlet-class>
</servlet>
<servlet-mapping>
<servlet-name>Upload</servlet-name>
<url-pattern>/upload</url-pattern>
</servlet-mapping>
<servlet-mapping>
<servlet-name>Serve</servlet-name>
<url-pattern>/serve</url-pattern>
</servlet-mapping>

http://localhost:8888/serve?blob-key="
http://localhost:8888/serve?blob-key="
http://localhost:/

Episode 13: Using the Blobstore Java API 169

Deploying the application

Since we are going to be running this application locally itself, we simply need to
validate it against the local development server. Assuming that the development is
complete, simply run the Web Application from your Eclipse IDE and using a browser,
navigate to http://localhost:8888/index.jsp. In my case, the port is 8888, but it could be
different for you.

Please make sure that you are connected to the Internet and do have a valid Twitter
userid and password.

Refer to the section above on Tweet My Picture in action for the flow. I will not repeat it
here again.

An interesting thing that you could look at is to navigate to

http://localhost:8888/ ah/admin console. Go to the DataStore viewer. If you have
uploaded several images successfully, you will find instances of the Entity :
__BlobInfo__ getting created. Click on the List Entities button to see the entities that
you have uploaded so far. The ID/Name column is the Blob Key for your Blob. A sample
screenshot from my development server instance is shown below:

http://localhost:8888/index.jsp
http://localhost:8888/_ah/admin

Episode 13: Using the Blobstore Java API 170

r ErmpaiFiype Cravabop

€ 5@ W@ hipiooathost 158 _shisdmindatasiosTknd=__Biobind e w S 6.0 F-
L 3||_' App Engine
tweetmypic Development Console

5 ki Datasiors Vievwer

Titkh Qi Erity Kina: [Do =] Lt s | i e
e
mbaund tded F Kay IV ame cauTd type creation filesana
(W APk P 1 betnagl Egatiilshd Lt TRF ERLERTIE TisH 00 E R bty o Hdmi DRI FalEL Tendvwiag A] Tha D [ERCH AR IR G
1T
162048
LM
2N
r agpld P01 EeGheigl Egalil sl LibsmTaX 1EFLIGTIFSde RF S 19 WM HaseF a0 ROCRIER gWCaTe3x'Wiky magafpay Fa D i i n LN]
L
DAk 36
U
2035
[] agpld G 1 SoShoigl Egaliilab Uben 2! 1BF I LE NG Hogsd EE W s MBS 3 M WEPFaGANEAT ThTzlvag TR Fai D DECHESE PG
18
01300
e
0%
T agpdies fodiogl Eguiti ehd Libm P 1 BRI bDEMM UENFHm O T RUGRRIWIMHC EHVTECLSRC D s i g g Fa [DS IO
18
Rk~
LTC
il
oy | !

CI0IE, 003 Gasgle

Conclusion

This brings the episode to an end. In this episode we saw the Blobstore API service that
has been introduced in version 1.3.0 of the App Engine SDK. The Blobstore API service
is experimental at this point in time and could change but it gives us enough today to see
how to create application that require blobs of large sizes like video and images. This
episode showed a simple implementation called Tweet My Picture but the possibilities
are endless. Do keep in mind that if you have to use Blobstore Service in a live
application hosted at the appspot.com domain, then you will need to enable “billing” for
your application.

Till the next episode, have fun with the Blobstore Service!

P.S: Just in case you were wondering... the picture of the lion was taken at a
distance of 2 feet away from it in the National Park, Mumbai.

http://gaejexperiments.files.wordpress.com/2009/12/ep13-7.jpg

Episode 14: Writing a Chrome Extension 171

Episode 14: Writing a Chrome Extension powered by
App Engine

Welcome to Episode 14. In this episode we shall cover how you can get started with
writing Google Chrome Extensions. We shall also drive the Extension via our App
Engine application. We have already seen in earlier episodes how your App Engine
applications participated within Google Wave, Google Talk, etc. So this episode takes it
further and shows how you can write a Google Chrome Extension whose data will be
provided by our App Engine Application.

Google Chrome Extension

Google Chrome browser since its release has got a fair amount of developer mind share.
Recently they addressed extensibility of the Chrome browser by announcing support for
writing your own extensions. So the focus is now on the developer to take this extension
mechanism, harness it and produce some great extensions that extend the capabilities of
the browser. You can read here the official announcement for Extension support over
here.

Google Chrome Dev Channel version

Note: The first thing that you need to do is download a copy of the Chrome Browser
from their Dev Channel because extensions are currently supported there till they come
into the mainstream release. So given that, make sure that you download that version of
Google Chrome browser.

The Beta channel or the Dev channel is available at :
http://www.chromium.org/getting-involved/dev-channel.

Depending on your Operation System, download the appropriate version and install it. To
check that you have extension enabled correctly, launch the Chrome Browser and click
on the Settings icon as shown below. You should see the Extensions menu item
available.

http://gaejexperiments.files.wordpress.com/2009/12/ep14-71.jpg
http://gaejexperiments.files.wordpress.com/2009/12/ep14-71.jpg
http://gaejexperiments.files.wordpress.com/2009/12/ep14-71.jpg
http://gaejexperiments.files.wordpress.com/2009/12/ep14-71.jpg
http://gaejexperiments.files.wordpress.com/2009/12/ep14-71.jpg
http://gaejexperiments.files.wordpress.com/2009/12/ep14-71.jpg
http://blog.chromium.org/2009/12/extensions-beta-launched-with-over-300.html
http://www.chromium.org/getting-involved/dev-channel

Episode 14: Writing a Chrome Extension 172

o~

Mew tab Chrl+T

I e wirdion Ctrl+M

M e incognito windaws Clrl+Shift+r
Alwanz shaw bookmarks bar - Chil+B

Full zcreen F11

Histom Ctrl+H
Bookmark: manager Clrl+Shift+E

D ownloads Chrl+J

Extenzions

Synchronize my bookmarks. ..

Ophions
About Google Chrome
Help F1

E xit

It is a good idea to take a look at the existing Chrome Extensions gallery that lists several
excellent extensions that you can start using today inside of your Google Chrome
browser. The gallery is available at Gallery : https://chrome.google.com/extensions.
This page also contains a link where you can submit your extension too for the world to
use!

See it in Action

Let us see our Google Chrome Extension that we shall build in this episode. The
extension is a simple Reminder application. It shows the current Reminders that you
have set up for the month. All the data is saved and managed by our App Engine
application and the Chrome Extension simply requests and fetches the data for the current
month.

Shown below is the Chrome Browser screen with our Extension available as a little red
icon in the Toolbar.

http://gaejexperiments.files.wordpress.com/2009/12/ep14-1.jpg
https://chrome.google.com/extensions

!
. Weh Images Maps Mews Orkut Books Gmal more v romin.k.iranié@qmail.

|
- Google

] Adwanced Search
Language Tools

Episode 14: Writing a Chrome Extension 173
ST
4 Google Lt
« C 1 | W Fitp Vwwew. google. co.ind > H{‘ ’ O~ fo- l

| iGoogle | Set=

| Google Searﬁh | | I'm Feeling Lucky |

Search: @ the web T pages from India

L4 fananle Parl: Mmanlnad free aecential anfbweare for vnne newe PC I
| 4 3

When we click the icon, it will fetch the reminders that I have setup in the current month
(December) and display them as shown below:

http://gaejexperiments.files.wordpress.com/2009/12/ep14-2.jpg

Episode 14: Writing a Chrome Extension 174

o [& |
*3 Google
€« C M < nttp/www.google co.in r UL R O~ k-
Web [mages Maps News Orkut Books Gmail m 25417 - Christrnas Daj.r "znaglelﬂ;

312 Hew Year Eve

Google

India

Advanced Search
Language Toals sl

Google Search I'm Feeling Lucky

Search: ® thewebh © pages from India

Fnnnle Park: Nownlnad free accanhial enthaare for worre newe P | AILI
‘ v

Sounds good? We shall split up the details into two parts:

Part | : The first part will deal with developing/deploying our Server side application.
This application will be deployed as a Google App Engine Java application. We shall
keep the implementation simple and not do any database operations, etc. The focus is on
the second part where we need to understand what it takes to get a simple Chrome
Extension up and running, and which is powered by this Google App Engine application.

Part 11: The second part will deal with how you can write a Google Chrome Extension.
We will consider the bare minimum that you need to do to get your extension working. I
will leave the design and look/feel aspects to you.

Alright then, let’s get started.

Developing our Java Web Application
MyReminderApp

The first thing to do is to create a New Google Web Application Project. Follow these
steps:

http://gaejexperiments.files.wordpress.com/2009/12/ep14-3.jpg

Episode 14: Writing a Chrome Extension 175

1. Either click on File —> New —> Other or press Ctrl-N to create a new project. Select
Google and then Web Application project. Alternately you could also click on the New
Web Application Project Toolbar icon as part of the Google Eclipse plugin.

2. In the New Web Application Project dialog, deselect the Use Google Web Toolkit
and give a name to your project. I have named mine MyReminderApp. I suggest you go
with the same name so that things are consistent with the rest of the article.

3. Click on Finish. This will generate the project and also create a sample Servlet named
MyReminderAppServlet for you. We shall be modifying this Servlet code
appropriately.

Design discussion
Now that the project template is ready, let me discuss in brief what we shall be building:

1. A simple Reminder App that contains a list of Reminders. Each Reminder is kept
simple and has 3 attributed only: The day, month and the description. For e.g.
[25,12,Christmas Day], [19,12,My Birthday], [1,1,New Year Day], [31,7,Pay Taxes] and
SO on.

2. So we will define a Reminder.java class that simply has getter/setters for the 3
attributes : day, month and description

3. We will then write a ReminderService.java class (A Singleton) that implements two
simple functions:

e ArrayList<Reminder> findRemindersByMonth(String month)
This method returns the reminders for a particular month. We pass in “1” and we
get reminders defined for January, etc.

e ArrayList<Reminder> findCurrentMonthReminders()
This method returns the reminders for the current month. The method determines
which month is currently on and retrieves reminders for that month only. And this
is precisely the method that will be invoked when our extension asks for the
current reminders.

4. Finally, we shall modify the MyReminderAppServlet.java so that it implements a
simple REST like interface for retrieving the reminders. If the request stream contains a
parameter named month, then the reminders will be returned for that month by invoking
the findRemindersByMonth method. If the request stream does not contain a parameter
named month, then the current month reminders will be returned by invoking the
findCurrentMonthReminders() method. The response will be returned in XML format.

Given next are the code listings, that should be straight forward to understand now:

Episode 14: Writing a Chrome Extension 176

Reminder.java

package com.reminderapp;
public class Reminder {

private String day;
private String month;
private String event;

public Reminder(String day, String month, String event) {
super();

this.day = day;

this.month = month;

this.event = event;

}
public String getDay() {
return day;

public void setDay(String day) {
this.day = day;

}

public String getMonth() {
return month;

}
public void setMonth(String month) {
this.month = month;

3
public String getEvent() {
return event;

public void setEvent(String event) {
this.event = event;

+
b

The Reminder class simply has 3 attributes : day , month and year. There are getter/setter
for each of these attributes and a constructor that takes in all the 3 attributes. We are
keeping at as String for now to keep things simple.

ReminderService.java

package com.reminderapp;

import java.util _ArraylList;
import java.util_Calendar;

public class ReminderService {
private static ReminderService _instance = null;

private ArrayList<Reminder> _reminderList = null;

Episode 14: Writing a Chrome Extension 177

private ReminderService() {
initializeData();

}

public static ReminderService getlnstance() {
if (instance == null) {
_instance = new ReminderService();

}

return _instance;

}

public ArrayList<Reminder> findRemindersByMonth(String month) {
ArrayList<Reminder> _results = new ArrayList<Reminder>();
for (Reminder reminder : _reminderList) {
if (reminder.getMonth() -equals(month)) {
results.add(reminder);

ey

return _results;

}

public ArrayList<Reminder> findCurrentMonthReminders() {
ArrayList<Reminder> _results = new ArrayList<Reminder>();

String currentMonth = " +
(Calendar .getlnstance() -get(Calendar MONTH)+1);
for (Reminder reminder : _reminderList) {

if (reminder.getMonth() .equals(currentMonth)) {
results.add(reminder);

Ty

return _results;

}

private void initializeData() {

_reminderList = new ArrayList<Reminder>();

Reminder R1 new Reminder(*'1","1","New Year Day");
Reminder R2 new Reminder(*'26","1","Republic Day');
Reminder R3 new Reminder(*'15","8", " Independence Day");
Reminder R4 new Reminder(*'25","12",""Christmas Day');
Reminder R5 new Reminder(*'31","12",""New Year Eve');

_reminderList.add(R1);
_reminderList.add(R2);
_reminderList.add(R3);
_reminderList.add(R4);
_reminderList.add(R5);

}
+

The ReminderService is a singleton class. And we are initializing some data here via the
initializeData() call. We are not complicating things by using a database here but this is

Episode 14: Writing a Chrome Extension 178

something that should ideally be there in a real application. As you can notice we add 5
sample records and for the current month i.e. December (12), we have two events. The
two methods findRemindersByMonth and findCurrentMonthReminders are
straightforward in which it goes through the reminderList and matches the records as
appropriate.

MyReminderAppServlet.java

package com.reminderapp;

import java.io.lOException;
import java.util _ArraylList;

import javax.servlet.http.*;

@SuppressWarnings(*'serial')

public class MyReminderAppServlet extends HttpServilet {

public void doGet(HttpServletRequest req, HttpServletResponse resp)
throws 10Exception {

resp.setContentType(*"text/xml™);
//resp.getWriter().printin(C'Hello, world™);

String month = (String)req.getParameter("'month'™);

ArrayList<Reminder> _results = null;

ifT (month == null) {

_results = ReminderService.getlnstance() - findCurrentMonthReminders();
}

else {

_results = ReminderService.getlnstance() - findRemindersByMonth(month);

}

StringBuilder SB = new StringBuilder();
SB.append(*'<?xml version=\"1.0\"?>");
SB.append(*'<ReminderList>"");

for (Reminder reminder : _results) {
SB.append(*'<Reminder>""+reminder.getDay()+"/"+reminder.getMonth(Q+" : " +
reminder.getEvent()+"</Reminder>");

}

SB.append(*'</ReminderList>");
resp.getWriter()-printIn(SB.toString());
}

b5

Let us go through the code for the MyReminderAppServlet in brief:

1. It implements the doGet(...) method and inspects if a request parameter named month
is passed or not.

2. If the month parameter is passed, its value is extracted and the findRemindersByMonth
method is invoked. Else the findCurrentMonthReminders is invoked.

Episode 14: Writing a Chrome Extension 179

3. The result is then formatted into a simple XML structure and then it is returned back in
the response stream.

Configuring the Servlet

We need to make sure that the entry for <servlet/> and <servlet-mapping/> in

the web.xml file. is there for MyReminderAppServlet. This file is present in the WEB-
INF folder of the project. The necessary fragment to be added to your web.xml file are
shown below.

<servlet>

<servlet-name>MyReminderApp</servlet-name>
<servlet-class>com.reminderapp.-MyReminderAppServlet</servlet-class>
</servilet>

<servlet-mapping>

<servlet-name>MyReminderApp</servilet-name>
<url-pattern>/myreminderapp</url-pattern>

</servlet-mapping>

Deploying the Application

To deploy the application, you will need to first create your Application ID. The
Application Identifier can be created by logging in at http://appengine.google.com with
your Google Account. You will see a list of application identifiers already registered
under your account (or none if you are just getting started). To create a new Application,
click on the Create Application button and provide the Application Identifier as
requested. Please note this name down since you will be using it for deployment.

For e.g. I have registered an application identifier named itsareminder.
To deploy the application, follow these steps (they should be familiar to you now):

1. Click on the Deploy Icon in the Toolbar.

2. In the Deploy dialog, provide your Email and Password. Do not click on Deploy
button yet.

3. Click on the App Engine Project settings link. This will lead you to a dialog,
where you need to enter your Application ID [For e.g. my Application
Identifier itsareminder]

4. Click on OK. You will be lead back to the previous screen, where you can click
on theDeploy button. This will start deploying your application to the GAEJ
cloud. You should see several messages in the Console window as the application
is being deployed.

5. Finally, you should see the message “Deployment completed successfully”.

http://appengine.google.com/

Episode 14: Writing a Chrome Extension 180

Testing our Reminder Service

To test our Reminder Service, we can use the
http://<Appld>.appspot.com/myreminderapp URL. You can replace it with your Appld
and endpoint as appropriate to your application. For e.g. I have hosted it at
http://itsareminder.appspot.com/myreminderapp and putting this in the browser returns
me the Reminders that are set for the current Month i.e. Month of December. I get the
following response XML:

<ReminderList><Reminder>25/12 : Christmas Day</Reminder><Reminder>31/12
: New Year Eve</Reminder></ReminderList>

Now that the development of the Reminder Service is complete, we can move on to the
next part i.e. developing the Chrome Extension.

Developing the Reminder Service Chrome Extension

The official documentation on developing a Chrome Extension is quite good and you
can refer it for more details. I will keep things to a minimum here and cover only what is
required to get the Chrome Extension up and running. Follow these steps:

1. Create a folder on your machine. For e.g. I have created the following folder on my
machine in C:\. It is c:\MyReminderExtension. All the necessary files that we create for
the extension will reside in this folder.

2. To create an extension, we need at the minimum 3 files. The three files are an icon file
for your extension. This icon will be visible in the toolbar as we saw earlier. The second
file is a manifest file called manifest.json. The manifest provides important metadata
about the extension like name,version, permissions, action, etc. And the final file is the
html file in which you will keep the core of your extensions code written in Javascript.

3. So the first thing that I do is to create a manifest file for the extension. The
manifest.json file for the Reminder Service is shown below:

{

"name': "My Reminder Extension’,
"version': "1.0",

"description': "Reminders based on month",
"browser_action": {

"default_icon': "myreminder.png",

“popup™: “reminder.html*

}

’ermissions": [
"http://itsareminder.appspot.com/"

1
+

http://itsareminder.appspot.com/myreminderapp
http://itsareminder.appspot.com/myreminderapp
http://code.google.com/chrome/extensions/getstarted.html
http://itsareminder.appspot.com/

Episode 14: Writing a Chrome Extension 181

As you can see this is pretty simple. There is the standard name/version/description that
you can give as per your preferences. The browser_action has two important attributes.
The default_icon refers to the icon file that contains the icon for our extension. So this
means that we will have the myreminder.png file present in the same folder. The popup
attribute indicates which HTML file to be invoked when the icon is clicked. The
permissions attribute indicates which domain the extension will be accessing to retrieve
the data. In our case it is the http://itsareminder.appspot.com domain at which we hosted
our application.

4. As shown above, we will create a file named myreminder.png in the same folder i.e.
C:\MyReminderExtension.

5. Finally, we have the reminder.html file that will contain the code of the extension. It
is listed below:

<style>

body {
min-width:200px;
overflow-x:hidden;

}
</style>

<script>

var req = new XMLHttpRequest();

req.open(

“"GET",
"http://itsareminder.appspot.com/myreminderapp™,
true);

req.onload = showReminders;

req.send(null);

function showReminders() {

19

var reminders = req.responseXML.getElementsByTagName(*'‘Reminder™);
20

for (var i = 0, reminder; reminder = reminders[i]; i++) {
var reminderDIV = document.createElement(*'div'");
reminderDIV._innerHTML = reminder.textContent;
document.body.appendChild(reminderDIV);

}

}

</script>

The code above is focussed around the <script> tag. It requires knowledge about AJAX
and the XMLHttpRequest object along with some Javascript basics. The core pieces are
mentioned below:

http://itsareminder.appspot.com/
http://itsareminder.appspot.com/myreminderapp

Episode 14: Writing a Chrome Extension 182

1. We use the XMLHttpRequest to make a call to our Reminder Service. The end point is
where our servlet is present to serve the requests i.e.
http://itsareminder.appspot.com/myreminderapp.

2. When we get the response XML, we call the showReminders() method. This method
simply parses the <Reminder> tags and for each tag, it creates a <div> element in which
the text content is the Reminder Event Text returned. Its appends each of the <div/>
elements to the document.body as shown.

Simple isnt it? Now let us see how to install this extension into your Chrome browser to
test it out.

Installing the Reminder Chrome Extension

At this point in time, I will assume that you have the following 3 files created in the
C:\MyReminder folder:

e manifest.json
e myreminder.png
e reminder.html

You could have created different files but just remember that you need the icon, manifest
and your html file that implements the Chrome extension code.

Once you have that, follow these steps:
1. Launch Google Chrome Browser. You need to go the Extensions page that allows you
to view the current extensions installed and from where you can either install new
extensions/reload/uninstall,etc. There are two ways to go to that page:

e In the address, type in chrome://extensions

o From the settings option as mentioned in the start of this article, click on the

“Extensions” menu option.

2. You should see a screen that looks something like this:

http://itsareminder.appspot.com/myreminderapp

Episode 14: Writing a Chrome Extension

183

E] Extenzions dh

&= C Mt 1 chromefestansions

Extensions

Extensions

Developer mode: Load unpacked exlension.. I Pack exdension... Upidate extensions now

Boo.. No extensions installed ;-

Want to browese the gallery instead?

= Devaloper mode

What this means is that there are no extensions currently installed in my Chrome

browser. If there were any, they would be listed over here.

3. Click on the Load unpacked extension button. This will bring up a dialog box from
where you can navigate to the folder where your extension files are present. In our case, it
was the C:\MyReminderExtension and so I navigate to that and click on OK as shown

below:

http://gaejexperiments.files.wordpress.com/2009/12/ep14-4.jpg

Episode 14: Writing a Chrome Extension

Browse For Folder

Select the extension direckory,

184

2]

(= } 14 uFeminderE stenzion
+ [CocomaSDE_0.92
+ [com.adobe. afcs
+ [T CustomDivideB ox
+ |3 cygwin
+) DefaulZone
+ [Documents and Setings
[DRIVERS
[+ 15 eclpze
+ |7 eclpze32
+ |3 Eclipse-Europa-Projects
+ |7 Eclipze-Ganymede-Projects
+ |3 eclipze-ies-galieo-win3?
+ |73 eclipze-jes-ganymede-win32
+ |3 EclipzeProjects

i

Falder: | MyReminderExtension

Make Mew Falder | Ik |

Cancel |

4. This will install the Chrome Extension in the browser as shown below:

Episode 14: Writing a Chrome Extension 185

: o8] 32 |
E}Exbmsims oG
C Mt % chrome/fextensions/ > ® G- F-|
Extensions
Extansions (1) = Developer mode
Developer mode: Load unpacked exdension.. | Pack extension.. Update extensions now

My Reiminder Extension - Version 1.0
{Unpacked)

Raminders bazed on month Beload - Disable - Lninstall
8]

mkogagbnicdnmgefccfcominiihceifi

(] s ==

5. Finally, we can test out the browser by clicking on the icon and it will display the list
of Reminders for the current month.

= |l &

E} Estensions o

< C M 9 chrome//edensions/ > R G- F-

2512 : Chnstmas Day
Extensions 31112 - Hew Year Eve

Extensions (1) = Developer mods

Developer mode: Load unpacked extension. . Fack extension... Llpdate extensions now I

My Reminder Extension - Version: 1.0
5 (Unpacked)

Reminders based on month

I Reload - Disable - Uninstall I

mkogagbnicdnmgefccfic cminiibcaifi

Inspect active views:
reminder.himl

Get moe extensions >>

http://gaejexperiments.files.wordpress.com/2009/12/ep14-6.jpg

Episode 14: Writing a Chrome Extension 186

If you have newer versions, all you need to do is simply click on Reload option for the
extension. Alternately, you can also Uninstall and load it again.

Some points to note:

1. You have not completely installed this extension. What this means is that if you close
the Chrome Browser and launch it again, this Extension will not be visible.

2. The next step would be to visit the official documentation at
http://code.google.com/chrome/extensions/getstarted.html and also go to the gallery and
submit your Extension. The gallery is present at : https://chrome.google.com/extensions
and you will find a link to submit your extension. Click that and follow the steps to
submit your extension. All you will need to provide from your side will be a ZIP file of
the folder that we mentioned above.

Conclusion

This concludes the final episode of the year 2009. In this episode we covered how to
write a Google Chrome Extension and power it via a Google App Engine application.

I hope that the new year takes you further into writing Cloud applications using Google
App Engine. I will continue to explore tools/languages/APIs/extensions that work in
coherence with the Google App Engine. The journey or might I say “Experiments” are
far from over. Have a great 2010 and thanks for reading this blog. Its been a joy to share
my experiments with all of you.

http://code.google.com/chrome/extensions/getstarted.html
https://chrome.google.com/extensions

Episode 15: Using a CAPTCHA 187

Episode 15: Using a CAPTCHA in your Google App
Engine Application

Welcome to Episode 15. In this episode, we shall cover how to incorporate a
CAPTCHA in your application. The CAPTCHA solution that | will be demonstrating
over here is the ReCAPTCHA project found here. To quote from its Wikipedia entry, a
CAPTCHA is a type of challenge-response test used in computing to ensure that the
response is not generated by the computer. Usually, one sees one or two words shown to
us that we need to enter and they need to match before our request submission is accepted
by the server.

See it in Action

Let us first see the application that we shall be developing in its final form. The main
screen is a dummy form that accepts one field and displays the CAPTCHA to the user as
shown below:

E ReCaptcha Integraton

< C AN < rttp/localhost8e88/captchabtmt | T @ WU O F-~

Your name:

‘@aﬂr@

Type the two words:
-l 1| meCAPTCHA
| e viog spam

Submit Data |

If the CAPTCHA response is entered correctly and the submit button is clicked, the
response is sent to the server. The server side validates the CAPTCHA challenge-
response and will display an “all is well” message as shown below:

http://gaejexperiments.files.wordpress.com/2010/02/episode15-1.png
http://gaejexperiments.files.wordpress.com/2010/02/recaptcha3.png
http://en.wikipedia.org/wiki/CAPTCHA
http://en.wikipedia.org/wiki/CAPTCHA
http://recaptcha.net/
http://recaptcha.net/
http://recaptcha.net/
http://recaptcha.net/
http://recaptcha.net/

Episode 15: Using a CAPTCHA 188

Bl FeCaptcha Integration
€« C N P rttp/localhostBB88/captchabtml | T @ U-{_i O A~

Your name: |Fﬂ1miﬂ
. . -
| Type the two words: -
il me CAPTCHA ™~
|T|'IE‘ cultured | | o | atop apam
rad Hooks

Submit Data |

Your record has been accepted and you did a good job entenng the two words. Thank you

If the CAPTCHA response is not entered correctly, the server side will display an “all is
not well” message as shown below:

Bl FeCaptcha Integration
€« = ﬂ‘ <7 http /Nocalhost BEB8/captcha html |~ P ": 1] U{i 0O &~

Your name: Romin
mEeaid
- . -
| Type the two words: -
il meCAPTCHA ™~
|M know | | o 1 mtop spam
road books

Submit Data |

You record was not accepted. Eeason : Your words did not match. Please try submithng again.

Episode 15: Using a CAPTCHA 189

ReCAPTCHA Project

We shall be using the ReCAPTCHAProject present at http://recaptcha.net/. The
ReCAPTCHAPproject is comprehensive and provides support for a variety of server side
platforms, hence | have gone with it. I do not have a particular preference for it, except
that most people recommended this to me and hence | decided to try it out. | was able to
integrate it easily and quickly into a recent App Engine application that is currently live,
so | can vouch for its ease of integration and which is what | shall demonstrate in this
experiment.

To get started with ReCAPTCHA, we need to do 2 things:

1. Get your private/public keys for the site name hat your application will
be running on.

Follow these steps:

1. First get yourself a ReCAPTCHAaccount. Go to
http://recaptcha.net/whyrecaptcha.html and click on the Sign up Now! button.

2. This will bring up a login form, but you click on the “New to reCaptcha? Sign up”
link. Here you can register by giving a username/password/email . Click on the
Sign up now button.

3. On successful registration, you will signed in automatically and led to a Create a
reCAPTCHA key page. Here you need to enter the site name that you will be
using ReCAPTCHAoN. Remember you can get ReCAPTCHAKeys for more than
1 site and you can manage it all from your account itself. For e.g. you can get a
key for localhost since that will be what we need to test on first before deploying
to the Google App Engine cloud. And then you will atleast need one based on the
Application 1D of your Google App Engine application. So for e.g. if my
application ID is gaejexperiments, then my full site url is
http://gaejexperiments.appspot.com. So you will need to enter
gaejexperiments.appspot.com in the Domain form field.

4. Click on Create Key. For e.g. shown below is the series of screens that | got
when | wanted keys for localhost. You will need to do the same if you wish to
test the code first on your local system i.e. localhost.

http://recaptcha.net/
http://recaptcha.net/whyrecaptcha.html
http://gaejexperiments.appspot.com/

Episode 15: Using a CAPTCHA 190

r_"
Re EAPTGHA' Create a reCAPTCHA key

(L ST

http: |In calhost I

&.§. tecaplohd.nel, example com

~+ HOME
=5 WHAT IS reCAPTCHA - ; :
R e Enable this key on all domains {global key)
=

MY ACCOUNT Tips

MY SITES ; . .
« By default, vour reCAPTCHA key |5 restricted to tha specified
MY PROFILE domain, and any subdomains for additional security. A key for

=+ EMAIL PROTECTION foo.com works on fest foo.com,
=+ RESOURCES
o [fyouwish to use vour key across a large number of domains

ie.g., ifyou are a hosting provider, OEM, etc.), select the global
key aption. You may want to use a descriptive domain name
such as "global-key.myc ompany.com”

s [[you own multiple domain names (foocars.com and
footrucks com), you can sign up for multiple keys, or use a
global key

Craate ey

Then when you click Create Key, you will be presented the Public Key and Private
Key as shown below:

r

+ 4 44

. |
Re EAPTC HA localhost
Dhamiain Maane: localhost
reC ARTCHA, wal only whork on this domein and subdomains. | you heve more than
HOME ane domain {or a staging server), you can creale a new el of keys
WHAT IS reCAPTCHA
GET i=CAPTCHA
Pulilic Hey: BLADHG S AAAARAFWEYZ TG B KM Dy R g DG ke
WY ACCOUNIT 4
MY SITES Usa this in the JavaScript code that is served fo vour users
NIV PROFILE
EMAIL PROTECTION Private ey ALODHGSAAARAARE_CRIMKRIEDRHT 2wzEtavzop
RESOURCES Uga thiz when commuricating between your server and owr server. Be sure fo
keep it & secret
Resowmces: reCAPTCHA pluains and libranes

e CAPTCHA AP Documentalion

Episode 15: Using a CAPTCHA 191

Please note down the Public and Private Key since you will need to use them in your
application. The usage is straightforward and mentioned on the screen and I will be
repeat it here:

e Use the Public Key in your HTML page (Javascript) to communicate with the
ReCAPTCHA server to get the challenge (image).

o Use the Private Key in your server side Java code that will be used to
communicate with the Server to verify the challenge + response submitted by the
form in the above step.

2. Download the JAR file that we shall be using at the Server side to verify
the CAPTCHA challenge and response.

To do the server side validation, you need to download a JAR file that is available from
the following url : http://code.google.com/p/recaptcha/downloads/list?g=label:java-
Latest. Go to the URL and you shall be presented with a screen as shown below:

@ recaptcha
Pluging and libranes for the reCAPTCHA AR

Project Home Dowmlboads Wiki lssues Source

Search [Curentdownioads | far [labeljava-Latest Search

Filename Sumimary + Labels v Uploadad = Siza »
recapichadi-0.0.7 zip reCAPTCHA Library for Java 0.0.7 Fastured Iar 2008 2T BKB

The JAR file is required and it encapsulates all communication between our application
and the ReCAPTCHA Servers.

Download the zip file, expand it in an appropriate folder and you will find the
recaptcha4j-0.0.7.jar present in that. We will need it later on to be referenced in your
App Engine Eclipse Project.

Developing our Application

The first thing to do is to create a New Google Web Application Project. Follow these
steps:

1. Either click on File —=> New —> Other or press Ctrl-N to create a new project. Select
Google and then Web Application project. Alternately you could also click on the New
Web Application Project Toolbar icon as part of the Google Eclipse plugin.

2. In the New Web Application Project dialog, deselect the Use Google Web Toolkit and
give a name to your project. | have named mine GAEJExperiments. | suggest you go with

http://code.google.com/p/recaptcha/downloads/list?q=label:java-Latest
http://code.google.com/p/recaptcha/downloads/list?q=label:java-Latest

Episode 15: Using a CAPTCHA 192

the same name so that things are consistent with the rest of the article, but | leave that to
you. In case you are following the series, you could simply use the same project and
skip all these steps altogether. You can go straight to the Servlet Development
section.

3. Click on Finish.

This will generate the project and also create a sample Hello World Servlet for you. But
we will be writing our own Servlet.

Add the recaptcha4j-0.0.7.jar file to your Project classpath

The recaptchadj-0.0.7 jar file that we downloaded needs to be added to the runtime and
compile time CLASSPATH of your App Engine Eclipse Project. Follow these steps:

a) Copy recaptcha4j-0.0.7.jar to the WEB-INF\lib folder of your project. This folder is
present in the war sub folder of your main project structure.

b) Go to Project properties —> Java Build Path and reference the JAR file (recaptcha4j-
0.0.7.jar) in the Java Build Path of your application as shown below:

{_t Properties tor GAEJE xpenments _ (]| KE
| Java Build Path 5 . =
Rezource)
Busdess ™ Source | 1 Projects B Librasies | %4, Drdes and Expat |

i Boade JARs and class folders on the buid path
J&va Buld Path e -

- Java Code Siyle DO ecaptchadi0.07 jat - GAEIEsperimentz/vaar SWEBANF /B Add JARs |

¥ Java Compiler + B App Engine SDE [appengregave-sdi-1.31 - 1.31)

+ Java Edbon v B JRE System Libraty [jdk1 6.6] Add Egbernal JARs . |
Javado: Location Add Y arishle. . |
Project References
Relactoning Histan Add Librgry. |
Fun/Debug Seltings

L Taik Fiagiaston Add Class Folder .|
Tank. Tage dd Extermal Ciass Folder . |

+ Validation
Tk T et

Ed. J
Benmove J
Migale JAR File. |

Episode 15: Using a CAPTCHA 193

The Front end HTML form [captcha.html]

<html xmlns="http://www.w3.0rg/1999/xhtml"
lang=""en" xml:lang=""en">
<head>
<title>ReCaptcha Integration</title>
<script type="text/javascript'>
function PreloadCaptcha() {
showRecaptcha();

}

function showRecaptcha() {
Recaptcha.create(*'YOUR_PUBLIC_KEY", "dynamic_recaptcha 1", {
theme: "white",
callback: Recaptcha.focus_response field
s
}

var xmlhttp;
function submitFormData(name)

{

//alert('Message") ;

xmlhttp=null;

if (window.XMLHttpRequest)
{// code for IE7, Firefox, Opera, etc.
xmlhttp=new XMLHttpRequest();

else if (window.ActiveXObject)
{// code for IE6, IE5
xmlhttp=new ActiveXObject("'"Microsoft.XMLHTTP") ;

}
ifT (xmlhttp!l=null)

{

xmlhttp.onreadystatechange=state Change;

var url = "postformdata";

var params = "‘name=""+name+"&recaptcha_challenge field="" +
Recaptcha.get _challenge() +
"&recaptcha_response_field="+Recaptcha.get response();

var status = document.getElementByld("'status'™);

status.innerHTML = "'Submitting
your data. Please wait...";

xmlhttp.open(*'POST" ,url, true);

xmlhttp.setRequestHeader (*'Content-type', "application/x-www-form-
urlencoded™);

xmlhttp.setRequestHeader (*'Content-length", params.length);

xmlhttp.setRequestHeader (*'Connection’, '"close'™);

xmlhttp.send(params);

}

else

http://www.w3.org/1999/xhtml%3C/a

Episode 15: Using a CAPTCHA 194

alert('Your browser does not support XMLHTTP."");

}
}

function state_Change()

{

iT (xmlhttp.readyState==4)
{// 4 = "loaded"
if (xmlhttp.status==200)

{
// 200 = "OK"
var status = document.getElementByld("'status'™);
status.innerHTML = xmlhttp.responseText; ;
Recaptcha.reload();
setTimeout(function() {
status.innerHTML = "***;
}. 3000);
}
else {
var status = document.getElementByld("'status™™);
status.innerHTML = xmlhttp.responseText; ;
Recaptcha.reload();
setTimeout(function() {
status.innerHTML = *'*';
}. 3000);
}
}
}

</script>
</head>

<body onload="PreloadCaptcha()">
<FORM NAME="‘dataform'>
<TABLE>
<TR>
<TD>Your name:</TD>
<TD><INPUT NAME=""txtName'/></TD>
</TR>
<TR>
<TD colspan="2"><div i1d="dynamic_recaptcha_1"></div></TD>
</TR>
<TR>
<TD colspan="2"><INPUT type=""button’ value="Submit
Data' name=""btnSubmitData" onClick=""submitFormData(txtName.value);
return true''></TD>

</TR>
<TR>
<TD colspan="2"><div id="status'/></TD>
</TR>
</TABLE>
</FORM>
</body>

</html>

Episode 15: Using a CAPTCHA 195

Let us go through the important parts of the code:

1. The first part to notice is that | have referenced the javascript file for the ReCAPTCHA
code as shown :

<script type="text/javascript"
src="http://api.recaptcha.net/js/recaptcha ajax.js""></script>

2. There is a javascript function call being made on the load of the body (<body
onload="PreloadCaptcha()”>). This invokes the function showRecaptcha() that is
shown below:

Recaptcha.create("'YOUR_PUBLIC_KEY", "dynamic_recaptcha 1", {
theme: "white",
callback: Recaptcha.focus_response field

¥

The Recaptcha class is available from the javascript file and we use the create method.
The first parameter is the PUBLIC_KEY that you get when you registered at ReCaptcha
for your site name. If you are testing it locally, this will be the Public Key for your
localhost site. The second parameter is a DIV element that is present in the form.

The create() method on successful invocation will populate the DIV element with the
CAPTCHA challenge/response fields.

3. The rest of the code is standard AJAX stuff. The submit button invokes the
submitDataForm() that does the following:

o Itwill invoke the URL : /postformdata that will be our servlet that does the
verification. The servlet code is discussed in the next section

o It will form the request parameter string as shown below:
var params = “name="+name+"&recaptcha_challenge_field=" +
Recaptcha.get_challenge() +
“&recaptcha_response_field="+Recaptcha.get_response();

o Note the two fields : recaptcha_challenge_field and
recaptcha_challenge_response_field. We get the two values from the
Recaptcha class methods, get_challenge() and get_response() respectively. The
get_challenge() is what was provided by the ReCAPTCHA Server and the
get_response() is what was entered by the user.

o Finally we do a POST to the server and collect the response. The response is that
displayed in another DIV element “status”.

Episode 15: Using a CAPTCHA 196

Please note that the code is just for demonstration purpose and may not represent the best
practices or most efficient way of writing JavaScript, AJAX, etc.

The Servlet [PostFormDataServlet.java]

package com.gaejexperiments.captcha;
import java.io.lOException;
import javax.servlet.http.*;

//RECAPTCHA

import net.tanesha.recaptcha.ReCaptchalmpl;

import net.tanesha.recaptcha.ReCaptchaResponse;
@SuppressWarnings(*'serial'")

public class PostFormDataServlet extends HttpServilet {

public void doPost(HttpServletRequest req, HttpServletResponse resp)
throws 10Exception {

resp.setContentType(""text/plain™);

String strResponse = "

try {

/*
* CAPTCHA CHECK
*
*
*/
//First validate the captcha, if not -- just get out of the loop
String challenge = (String)
req.-getParameter(*'recaptcha_challenge field);
String response = (String)
req.getParameter(*'recaptcha_response field™);
if ((challenge == null) || (response == null)) {
throw new Exception(*'Your words did not match. Please try submitting
again.");

}

String remoteAddr = req.getRemoteAddr();
ReCaptchalmpl reCaptcha = new ReCaptchalmpl();

reCaptcha.setPrivateKey(*"YOUR_PRIVATE_KEY'™);

ReCaptchaResponse reCaptchaResponse =
reCaptcha.checkAnswer(remoteAddr, challenge, response);

if (IreCaptchaResponse.isvValid()) {

//RECAPTCHA VALIDATION FAILED

throw new Exception(*'Your words did not match. Please try
submitting again.");

Episode 15: Using a CAPTCHA 197

}

strResponse = "Your record has been accepted and you did a good
job entering the two words. Thank you™;

catch (Exception ex) {
strResponse = "You record was not accepted. Reason : "+
ex.getMessage();

resp.getWriter() .println(strResponse);

}
+

Let us go through the important parts in the code:

1. Notice that we are importing 2 classes : net.tanesha.recaptcha.ReCaptchalmpl

and net.tanesha.recaptcha.ReCaptchaResponse at the beginning. These are the
implementation classes that encapsulate the verification with the ReCAPTCHA Server
and the response from the ReCAPTCHA Server respectively.

2. We first extract out the challenge and the response fields as passed by our form.

String challenge = (String)
req.-getParameter(*'recaptcha_challenge field);
String response = (String)
req.getParameter(*'recaptcha_response field™);

3. We also need the Remote IP Address that is making the request.

String remoteAddr = req.getRemoteAddr();

4. We then instantiate an instance of the ReCaptchalmpl class. We set the Private Key
that we got during our registration for the site localhost. Please use your key over here.
And then we make a call to their server by invoking the checkAnswer method. The
checkAnswer method takes 3 parameters : challenge, response and the Remote
Address.

ReCaptchalmpl reCaptcha = new ReCaptchalmpl();
reCaptcha.setPrivateKey("'"YOUR_PRIVATE KEY'™);

ReCaptchaResponse reCaptchaResponse =
reCaptcha.checkAnswer(remoteAddr, challenge, response);

http://gaejexperiments.wordpress.com/2010/02/22/episode-15-using-a-captcha-in-your-google-app-engine-application/#viewSource
http://gaejexperiments.wordpress.com/2010/02/22/episode-15-using-a-captcha-in-your-google-app-engine-application/#viewSource
http://gaejexperiments.wordpress.com/2010/02/22/episode-15-using-a-captcha-in-your-google-app-engine-application/#viewSource

Episode 15: Using a CAPTCHA 198

5. We will receive an instance of the ReCaptchaResponse class. We simply use a utility
method isValid() to determine if the response entered for the challenge was correct. And
depending on that we send back an appropriate response back to the browser, which is
then displayed to the user.

Servlet Configuration

To complete our Servlet development, we will also need to add the <servlet/> and
<servlet-mapping/> entry to the web.xml file. This file is present in the WEB-INF
folder of the project. The necessary fragment to be added to your web.xml file are shown
below. Please note that you can use your own namespace and servlet class. Just modify it
accordingly if you do so.

<servlet>

<servlet-name>PostFormDataServilet</servilet-name>

<servlet-
class>com.gaejexperiments.captcha.PostFormDataServlet</servlet-class>
</servlet>

<servlet-mapping>

<servlet-name>PostFormDataServilet</servilet-name>
<url-pattern>/postformdata</url-pattern>

</servlet-mapping>

Running the application locally

| am assuming that you have already created a new Google Web Application Project and
have created the above Servlets, web.xml , etc. We shall be running this episode within
our local development server only since the keys that | have used are for localhost.
Before you deploy the application to the actual Google App Engine infrastructure using
your Application ID, do remember to get yourself the appropriate public/private
ReCAPTCHA keys for your site name.

So assuming that all is well, we will run our application, by right-clicking on the project
and selecting Run As —> Web Application. Launch the browser on your local machine
and navigate to http://localhost:<YourLocalPort>/captcha.htmi

Conclusion

In this episode, we saw how to incorporate a CAPTCHA in our Google App Engine
application. Please remember that you will need to determine if you really need a
CAPTCHA in your application. There are some good points mentioned in this article on
various other techniques that can be used to address the same problems.

http://localhost:%3CYourLocalPort%3E/captcha.html
http://www.sitepoint.com/blogs/2009/05/14/captcha-alternatives/

Episode 16 : Using the Datastore API 199

Episode 16 : Using the Datastore API

Welcome to Episode 16. In this episode we shall cover basic usage of the Datastore API
in Google App Engine. The Datastore API is used to persist and retrieve data. Google
App Engine uses the BigTable database as its underlying datastore and provides
abstraction for using it via the Datastore API. There are currently two options available to
developers i.e. via the Java Data Objects (JDO) and Java Persistence Architecture (JPA)
APIs.

In this episode, we shall cover the following items:

o Persist a simple record to the datastore using JDO. The intention is to limit it to a
single record in this episode and not address relationships and complex structures.
That could be the basis of future episodes.

o Retrieve the persisted records by firing some queries. In the process, we shall see
how to create parameterized queries and execute them.

« Discuss some nuances about indexes and what steps you need to do to make sure
that the same application that you use locally will work fine when deployed to the
Google App Engine cloud.

The underlying theme will not be to present a comprehensive tutorial about the Datastore
API. There are some excellent references available for that. The official documentation
and well as the GAE Persistence Blog. The focus will be on getting up and running with
the Datastore APl ASAP and seeing it work when deployed to the cloud.

What we shall build

In this episode, we shall build the following:

1. Create a simple Object that we shall persist to the underlying datastore. The
Object will be a Health Report and will have about 4-5 attributes that we would
like to save.

2. Write the Save method that takes an instance of the above Health Report Record
and persists it using the JDO API.

3. Write a Search method that will query for several Health Reports using several
filter parameters.

4. Look at the datastore_indexes.xml file that is required when you deploy the
application to the cloud.

Please note that the focus will be on the server side and not on building a pretty GUI. All
server side actions will be invoked via a REST like request (HTTP GET) — so that we
can test the functionality in the browser itself.

http://gaejexperiments.files.wordpress.com/2010/02/ep16-5.png
http://gaejexperiments.files.wordpress.com/2010/02/ep16-5.png
http://gaejexperiments.files.wordpress.com/2010/02/ep16-5.png
http://gaejexperiments.files.wordpress.com/2010/02/ep16-5.png
http://gaejexperiments.files.wordpress.com/2010/02/ep16-5.png
http://gaejexperiments.files.wordpress.com/2010/02/ep16-5.png
http://code.google.com/appengine/docs/java/datastore/
http://gae-java-persistence.blogspot.com/

Episode 16 : Using the Datastore API 200

Developing our Application

The first thing to do is to create a New Google Web Application Project. Follow these
steps:

1. Either click on File —> New —> Other or press Ctrl-N to create a new project. Select
Google and then Web Application project. Alternately you could also click on the New
Web Application Project Toolbar icon as part of the Google Eclipse plugin.

2. In the New Web Application Project dialog, deselect the Use Google Web Toolkit and
give a name to your project. | have named mine GAEJExperiments. I suggest you go with
the same name so that things are consistent with the rest of the article, but I leave that to
you. In case you are following the series, you could simply use the same project and
skip all these steps altogether. You can go straight to the Servlet Development
section.

3. Click on Finish.

This will generate the project and also create a sample Hello World Servlet for you. But
we will be writing our own Servlet.

Few things to note first:

Quite a few things are enabled for you by default as far as the database support is
concerned. They are as follows:

a. Several JAR files are added to the CLASSPATH by default. Take a look and you will
see several JARs *jpa*.jar, *datanucleus*.jar, etc.

b. In the src/META-INF folder, you will find a jdoconfig.xml file. There is a default
Persistence Manager Factory class in that that we shall be using in the rest of the article.
For the purposes of this article we do not need to do anything to this file.

c. GAEJ uses the DataNucleus library to abstract the BigTable store. The DataNucleaus
library provides the JDO and JPA interfaces so that you do not have to deal with the
underlying low level API. You will also find a logging.properties file present in
war/WEB-INF folder. You will find several log levels mentioned for the DataNucleus
classes. You can tweak them to lower levels like DEBUG/INFO to see more debug level
statements of what happens when you are using these APIs. | have found it very helpful
to set the debug levels to DEBUG/INFO especially when facing a problem.

Episode 16 : Using the Datastore API 201

PMF.java

The first class that we shall write is a simple utility class that shall get us the underlying
Persistence Manager factory instance. This class is important since all other methods like
saving a record, querying records, etc will work on the instance of the
PersistenceManagerFactory.

The code is shown below and wherever we need an instance of the class, we shall simply
invoke the get() method below:

package com.gaejexperiments.db;

import javax.jdo.JDOHelper;
import javax.jdo.PersistenceManagerFactory;

public final class PMF {
private static final PersistenceManagerFactory pmflnstance =
JDOHelper .getPersistenceManagerFactory(‘"transactions-
optional™);

private PMFQ {}

public static PersistenceManagerFactory get() {
return pmflnstance;
}

b

HealthReport.java

Next is the Health Report. As mentioned in the beginning of the article, we shall be
saving a Health Report record. The Health Report will have 4 attributes and they are
explained below:

1. Key : This is a unique key that is used to persist/identify the record in the
datastore. We shall leave its implementation/generation to the Google App
Engine implementation.

2. PinCode : This is similar to a ZipCode. This is a string that shall contain the value
of the zipcode (Area) where the Health Incident has occured.

3. Healthincident: This is a string value that contains the health incident name. For
e.g. Flu, Cough, Cold, etc. In this simple application — we shall be concerned
only with 3 health incidents i.e. Flu, Cough and Cold.

4. Status : This is a string value that specifies if the record is ACTIVE or
INACTIVE. Only records with ACTIVE status shall be used in determining
any statistics / data reports. We shall set this value to ACTIVE at the time of
saving the record.

5. ReportDateTime : This is a Date field that shall contain the date/time that the
record was created.

Episode 16 : Using the Datastore API 202

Shown below is the listing for the HealthReport.java class. In addition to the above
attributes and getter/setter methods for them, note the following additions to make sure
that your class can be persisted using JDO.

1. We need to have a constructor that contains all the fields except for the Key field.

2. All fields that need to be persisted are annotated with the @Persistent annotation.

3. The class is declared as being persistable via the @PersistenceCapable annotation
and we are leaving the identity to the Application.

4. The Primary Key field i.e. Key is declared via the @PrimaryKey annotation and we
are using an available Generator for the ID instead of rolling our own.

package com.gaejexperiments.db;

import java.util._Date;
import com.google.appengine.api.datastore.Key;

import javax.jdo.annotations.ldGeneratorStrategy;
import javax.jdo.annotations. ldentityType;

import javax.jdo.annotations.PersistenceCapable;
import javax.jdo.annotations.Persistent;

import javax.jdo.annotations.PrimaryKey;

@PersistenceCapable(identityType = ldentityType.APPLICATION)
public class HealthReport {
@PrimaryKey
@Persistent(valueStrategy = ldGeneratorStrategy. IDENTITY)
private Key key;

private String pinCode;
@Persistent

private String healthlncident;
@Persistent

private String status;
@Persistent

private Date reportDateTime;

public HealthReport(String pinCode, String healthlncident,String
status, Date reportDateTime) {

super(Q);

this.pinCode = pinCode;

this._healthincident = healthlncident;

this.status = status;

this.reportDateTime = reportDateTime;

}

public Key getKey() {
return key;

}

public void setKey(Key key) {
this.key = key;

}

public String getPinCode() {

Episode 16 : Using the Datastore API 203

return pinCode;

}

public void setPinCode(String pinCode) {
this.pinCode = pinCode;
}

public String getHealthincident() {
return healthlncident;

}

public void setHealthlncident(String healthlncident) {
this._healthincident = healthlncident;
3

public String getStatus() {
return status;

}

public void setStatus(String status) {
this.status = status;

}

public Date getReportDateTime() {
return reportDateTime;

}

public void setReportDateTime(Date reportDateTime) {
this.reportDateTime = reportDateTime;

}
+

PostHealthIncidentServlet.java

We shall now look at how to persist the above Health Record. Since we are not going to
build a Ul for it, we shall simply invoke a servlet (HTTP GET) with the required
parameters. It would almost be like a FORM submitting these values to the Servlet.
Before we write this Servlet code, let us look at how we will invoke it. Given below is a
screenshot of the browser where | punch in the URL :
http://localhost:8888/posthealthincident?healthincident=Flu&pincode=400101

http://localhost:8888/posthealthincident?healthincident=Flu&pincode=400101

Episode 16 : Using the Datastore API 204

hitp://localhost:8888...
[&= ! r - -
€ > C N Trwe v g0 O F

Your Health Incident has been reported successfully.

As you can see, | am running the application on my local development server and invoke
the servlet (which we shall see in a while) providing two key parameters healthincident
and pincode. These two parameters are two key fields of the HealthReport class that we
saw above. The other fields like ReportDateTime and Status are determined
automatically by the application. Similarly the Key value of the record in the underlying
datastore will be generated by App Engine infrastructure itself.

Let us now look at the PostHealthIncidentServlet.java code shown below:

package com.gaejexperiments.db;

import java.io.lOException;
import java.util._Date;
import java.util.logging.Logger;

import javax.servlet.ServletException;

import javax.servlet_http.*;

@SuppressWarnings(*'serial'")

public class PostHealthlncidentServlet extends HttpServlet {
public static final Logger _logger =

Logger .getLogger (PostHealthlncidentServlet.class.getName());

@Ooverride

protected void doGet(HttpServletRequest req, HttpServletResponse resp)
throws ServletException, I0Exception {

doPost(req, resp);

}

public void doPost(HttpServletRequest req, HttpServletResponse resp)
throws 10Exception {

http://gaejexperiments.files.wordpress.com/2010/02/ep16-1.png

Episode 16 : Using the Datastore API 205

resp.setContentType(*"text/plain™);

String strResponse = ""';
String strHealthlncident = "'';
String strPinCode = '"*';

try {

//D0 ALL YOUR REQUIRED VALIDATIONS HERE AND THROW EXCEPTION IF
NEEDED

strHealthincident = (String)req.getParameter(“’healthincident™);
strPinCode = (String)req.getParameter(*'pincode™);
String strRecordStatus = "ACTIVE";

Date dt = new Date();
HealthReport HR = new HealthReport(strPinCode,

strHealthincident,
strRecordStatus,
dt);
DBUt1 Is.saveHealthReport(HR) ;
strResponse = "Your Health Incident has been reported
successfully.";
catch (Exception ex) {
_logger.severe("Error in saving Health Record : ™ +
strHealthlncident + "," + strPinCode + " : " + ex.getMessage());
strResponse = "Error in saving Health Record via web. Reason : " +

ex.getMessage();

resp.getWriter() -println(strResponse);

}
+

The main points of the code are :

1) We extract out the HealthIncident and PinCode request parameters. We do not do any
particular validations but you could do all of that depending on your application
requirement.

2. We generate the two other field values i.e. Date (ReportDate) and Status (ACTIVE).

3. Finally, we create a new instance of the HealthReport class, providing the values in the
constructor. And then call the DBUtils.saveHealthReport(...) method that persists the
record to the underlying datastore.

4. We display back a successfull message if all is well, which is what was visible in the
screenshot above.

Let us look at the DBUTils.java class now. Please note that we have simply separated out
the code into this file but you can manage/partition your code in any which way you
like.

Episode 16 : Using the Datastore API 206

DBUTtils.java

The DBUTils.java source code is listed below. Focus first on the saveHealthReport()
method which was invoked by our servlet earlier. The other method, we shall come to
that later on in the article.

Key Points are :

1. The saveHealthReport() method first gets the instance of the PersistenceManager
through the PMF.java class that we wrote earlier.

2. It simply invoke the makePersistent() method on it. The makePersistent() method will
take as a parameter the object that you want to persist. In our case it is the
HealthReport.java class instance that we have created in the servlet. This method will
persist the record and in the process also assign it a unique key.

3. Finally, we need to close the PersistenceManager instance by invoking the close()
method.

The entire code listing is shown below:

package com.gaejexperiments.db;

import java.util.Calendar;
import java.util_HashMap;

import java.util.lterator;
import java.util._List;

import java.util_Map;

import java.util.logging.Level;
import java.util.logging.Logger;

import javax.jdo.PersistenceManager;
import javax.jdo.Query;

public class DBUtils {
public static final Logger _logger =
Logger .getLogger(DBUtils.class.getName());

//Currently we are hardcoding this list. But this could also be

retrieved from

//database

public static String getHealthlncidentMasterList() throws Exception {
return "Flu,Cough,Cold";

}

/**
* This method persists a record to the database.
*/
public static void saveHealthReport(HealthReport healthReport)
throws Exception {
PersistenceManager pm = PMF.get() -getPersistenceManager();

try {
pm.makePersistent(healthReport);

Episode 16 : Using the Datastore API 207

_logger.log(Level . INFO, "Health Report has been saved™);
} catch (Exception ex) {

_logger.log(Level .SEVERE,

"Could not save the Health Report. Reason : ™
+ ex.getMessage());
throw ex;
} finally {
pm.close();
}
}

/**
* This method gets the count all health incidents in an area
(Pincode/Zipcode) for the current month
* @param healthlncident
* @param pinCode
* @return A Map containing the health incident name and the number of
cases reported for it in the current month
*/
public static Map<String, Integer>
getHealthincidentCountForCurrentMonth(String healthincident, String
pinCode) {

Map<String, Integer> healthReport = new HashMap<String, Integer>();

PersistenceManager pm = null;

//Get the current month and year
Calendar c = Calendar.getlnstance();

int CurrentMonth = c.get(Calendar.MONTH);
int CurrentYear = c.get(Calendar.YEAR);

try {

//Determine if we need to generate data for only one health Incident
or ALL

String[] healthlncidents = {};
if (healthlncident.equalslgnoreCase("'ALL™)) {
String strHealthlncidents = getHealthlncidentMasterList();
healthlncidents = strHealthlncidents.split(*,");
}
else {

healthlncidents = new String[]{healthincident};
}

pm = PMF.get() .getPersistenceManager();
Query query = null;

//1f Pincode (Zipcode) is ALL, we need to retrieve all the records
irrespective of Pincode

if (pinCode.equalslgnoreCase("ALL™)) {

//Form the query

query = pm.newQuery(HealthReport.class, " healthlncident ==
paramHealthlncident && reportDateTime >= paramStartDate &&
reportDateTime < paramEndDate && status == paramStatus');

// declare parameters used above

Episode 16 : Using the Datastore API 208

query.declareParameters(*'String paramHealthlncident, java.util_Date
paramStartDate, java.util_Date paramEndDate, String paramStatus'™);

else {
query = pm.newQuery(HealthReport.class, " healthlncident ==
paramHealthlncident && pinCode == paramPinCode && reportDateTime >=

paramStartDate && reportDateTime <paramEndDate && status ==
paramStatus'™);

// declare params used above

query.declareParameters(*'String paramHealthlncident, String
paramPinCode, java.util_Date paramStartDate, java.util_Date
paramEndDate, String paramStatus'™);

}

//For each health incident (i.e. Cold Flu Cough), retrieve the
records

for (int i = 0; 1 < healthlncidents.length; i++) {

int healthlncidentCount = 0O;

//Set the From and To Dates i1.e. 1st of the month and 1st day of

next month

Calendar _call = Calendar.getlnstance();

_call.set(CurrentYear, CurrentMonth, 1);

Calendar _cal2 = Calendar.getlnstance();
_cal2._set(CurrentYear,CurrentMonth+1,1);

List<HealthReport> codes = null;

if (pinCode.equalslgnoreCase("ALL™)) {

//Execute the query by passing in actual data for the filters

codes = (List<HealthReport>)
guery.executeWithArray(healthincidents[i], call.getTime(), cal2.getTime
O."ACTIVE™);

}

else {

codes = (List<HealthReport>)
query.executeWithArray(healthlncidents[i], pinCode,
_call.getTime(),_cal2.getTime(), "ACTIVE™);

//lterate through the results and increment the count

for (lterator iterator = codes.iterator(); iterator._hasNext();) {
HealthReport _report = (HealthReport) iterator.next();
healthlncidentCount++;

}

//Put the record in the Map data structure
_healthReport.put(healthlncidents[i], new
Integer(healthlncidentCount));
}
return _healthReport;
} catch (Exception ex) {
return null;
} finally {
pm.close();

b

Episode 16 : Using the Datastore API 209

}
b

Assuming that your application is running, you can view the data records that are being
persisted. If you navigate to http://localhost:<YourPort>/_ah/admin in your browser, you
will see a screenshot similar to the one shown below:

ﬁ gaepExpenments Da.

“ ¢ # &% http:/localhost:8888/ _ah/admin E ”n{; @ W l&l.l © 0O- F-

Goc :3|C App Engine

gaejexperiments Development Console

Datastore Viewer

Distastore Viewsr

Task Queves Entity Kind: [HealthRepont »| _ List Entities |
XMPP
Inkound Mail

22008, 2009 Google

The screen above shows the Entity types that are currently having some data records. In
our case it is the HealthReport entity of which we have saved one record so far. If you
click on the List Entities button, you can see the records that are currently persisted for
the HealthReport Entity Type. A sample screenshot from my system after saving my first
record is shown below:

http://localhost:%3CYourPort%3E/_ah/admin

Episode 16 : Using the Datastore API 210

ﬂ o nriieris D

L o C M 1 huiplocakhosicB hiadmin/datns Thand=HealhHepon e LI:‘i-.- e |-€I-'-||3 O- #-
G -Hl\.' App Engine
gasjexperiments Development Consaole

L A Datastore Viewar

B Eniy Kind: [Heabrraport =] | List Eniiks Remalis 1-1 a1
IMPE
i Idal r Hey IDiame healhincident pinCode reporilisdsTims LIELATY
P aginYWhgDiwZ o WiadHhE g S DER YW laF Sc GyaBgBOA. 1 Fiu 400101 FriFeb 26 ACTIVE
06:35 40 UTC
i pi]
D | i

E3002 2005 Google

Go ahead and populate a few more records in the database for different
HealthIncidents like Cough, Cold, Flu (only). This is needed so that we can get some
more data when we cover how to query persistent data in the next section.

ReportsServlet.java

Before we look at this servlet, let us look at the output that this servlet produces, so that it
becomes easier to follow the code later. This is assuming that you have added atleast 4-5
records using the /posthealthincident servlet that we covered above.

Shown below is the screenshot of the servlet output when I provide the following url:

http://localhost:8888/reports?type=HEALTHINCIDENTCOUNT CURRENT MONTH
&healthincident=Flu&pincode=ALL

What we are asking for here is a report that gets all health incidents in the current month
(type = HEALTHINCIDENTCOUNT_CURRENT_MONTH) for the healthincident =
Flu and where pincode = ALL (irrespective of pincode)

http://localhost:8888/reports?type=HEALTHINCIDENTCOUNT_CURRENT_MONTH&healthincident=Flu&pincode=ALL
http://localhost:8888/reports?type=HEALTHINCIDENTCOUNT_CURRENT_MONTH&healthincident=Flu&pincode=ALL

Episode 16 : Using the Datastore API

_[B]x]

File Edit View History Bookmarks Tools Help

9 |« |#) http.=ALL » O- G~ B - & & B @

qs P

&) hitp//localhost:8888/re 17 ~ | 4 | x

>

This XML file does not appear to have any stvle information associated with it. The
document tree is shown below.

—<Response>
<Status=success</Status>
<StatusDescription/>

— <Result>
— <HealthIncident™>
<pame>Flu</name>
<count>1-</count>
</HealthIncident>
</Result>
</Response>

Je = -

Shown below is the screenshot of the servlet output when I provide the following url:

211

http://localhost:8888/reports?type=HEALTHINCIDENTCOUNT CURRENT MONTH

&healthincident=ALL &pincode=ALL
What we are asking for here is a report that gets all health incidents in the current mo
(type = HEALTHINCIDENTCOUNT_CURRENT_MONTH) for the healthincident

nth

= ALL (irrespective of health incident which means all of them) and where pincode =

ALL (irrespective of pincode)

http://localhost:8888/reports?type=HEALTHINCIDENTCOUNT_CURRENT_MONTH&healthincident=ALL&pincode=ALL
http://localhost:8888/reports?type=HEALTHINCIDENTCOUNT_CURRENT_MONTH&healthincident=ALL&pincode=ALL

Episode 16 : Using the Datastore API 212

'} Mozilla Firefox
File Edit View History Bookmarks Tools Help

r"".}xy = ';

@u v Fij ..:F |l;' http /Nlocalhost:8888/reports Ptype=H 1.7 [ﬁ[){

s

i & http-flocalho. LL&pincode=ALL - -B-dAe -G8 5

This XML file does not appear to have any style information associated with it The document tree is
shown below.

— <Response>
<Status>success</Status>
<StatusDescription>

—<Result>
—<HealthIncident>
<pame>Fli<name>
<count>2</count>
</Healthlncident>
—<Healthlncident>
<pame>Cold</name>
<count>]1</count>
</HealthIncident>
= <HealthIncident>
<name>Cough</name>
<count>1</count>
</HealthIncident>
</Result>
</Response>

£ Done o

So what we have effectively done here is to query the set of Health Records that are
present in our database using a variety of parameters (filters). In other words, if we take a
SQL like aspect to it, we are saying something like this:

SELECT * FROM HEALTHREPORTS WHERE PINCODE = %1 AND
HEALTHINCIDENT = %2 AND REPORTDATE >= %3 AND REPORTDATE <
%4 AND STATUS = ACTIVE, etc.

Episode 16 : Using the Datastore API 213

The above SQL statement is just representative of the queries that we want to execute. So
let us look at the code for the servlet first.

package com.gaejexperiments.db;

import java.io.lOException;
import java.util.lterator;
import java.util_Map;

import javax.servlet.http.HttpServilet;

import javax.servlet.http.HttpServletRequest;

import javax.servlet_http.HttpServletResponse;

@SuppressWarnings(*'serial')

public class ReportsServlet extends HttpServilet {

public void doGet(HttpServletRequest req, HttpServletResponse resp)
throws I10Exception {
resp.setContentType(*"text/xml™);

String strResult = "'';
String strData = ""';
try {

String type = (String)req.-getParameter('type');
ifT (type == null) {

strResult = '"No Report Type specified.";
throw new Exception(strResult);

}
else 1f (type.equals(""HEALTHINCIDENTCOUNT CURRENT_MONTH')) {
String strHealthlncident =
(String)req.getParameter("'healthincident');
String strPinCode = (String)req.getParameter(‘'pincode™™);
Map<String, Integer> _healthReports =
DBUti Is.getHeal thlncidentCountForCurrentMonth(strHealthlncident,strPinC
ode);
if (_healthReports == null) {

else {
Iterator<String> it = healthReports.keySet().iterator();
while (it.hasNext()) {
String healthlncident = (String)it.next();
int healthlncidentCount = 0O;
Integer healthlncidentCountObject =
_healthReports.get(healthlncident);
if (healthlncidentCountObject == null) {
healthlncidentCount = 0O;
}
else {
healthlncidentCount = healthlncidentCountObject.intValue();

b5
if (healthlncidentCount > 0)
strData += "<Healthlncident><name>" + healthlncident + ''</name>"
+ "<count>" + healthlncidentCount + "</count></Healthlncident>";
b
b

Episode 16 : Using the Datastore API 214

strResult =
""<Response><Status>success</Status><StatusDescription></StatusDescripti
on><Result>" + strData + "</Result></Response>";

}

catch (Exception ex) {

strResult = "<Response><Status>fail</Status><StatusDescription>"+
“"Error in executing operation : " + ex.getMessage() +
""'</StatusDescription></Response>";

}
resp.getWriter() -println(strResult);

} </pre>
<pre>

The Servlet code is straightforward:

1. Currently it has only one type of report i.e.
HEALTHINCIDENTCOUNT_CURRENT_MONTH

2. Next we extract out the Pincode and the HealthIncident request parameter values.

3. Then we invoke the DBUtils.getHealthIncidentCountForCurrentMonth method.
This takes two parameters : pincode and healthincident that we have got from above step.
4. The method will return us a map where each record in the map will contain the key
(String) containing the healthincident name and the value containing the count of
incidents reported for that month. So something like [{"Flu","20"} , {"Cough”, "30"} ,
{"Cold","10"}]

5. Finally we simply format that into a XML output so that it can be returned to the client.
And this is the exact output that we see in the browser.

Analyzing the DBULtils.getHealthIncidentCountForCurrentMonth method

| reproduce here the method from the DBUTtils.java class that was listed before:

/**

* This method gets the count all health incidents in an area
(Pincode/Zipcode) for the current month

* @param healthlncident

* @param pinCode

* @return A Map containing the health incident name and the number of
cases reported for it in the current month

*/

public static Map<String, Integer>
getHealthincidentCountForCurrentMonth(String healthincident, String
pinCode) {

Map<String, Integer> healthReport = new HashMap<String,
Integer>Q);

PersistenceManager pm = null;

Episode 16 : Using the Datastore API 215

//Get the current month and year
Calendar c = Calendar.getlnstance();

int CurrentMonth = c.get(Calendar.MONTH);
int CurrentYear = c.get(Calendar.YEAR);

try {
//Determine if we need to generate data for only one health Incident
or ALL
String[] healthlncidents = {};
if (healthlncident.equalslgnoreCase("'ALL™)) {
String strHealthlncidents = getHealthlncidentMasterList();
healthlncidents = strHealthlncidents.split(*",");
}
else {
healthlncidents = new String[]{healthlncident};

}

pm = PMF.get().getPersistenceManager();
Query query = null;

//1T Pincode (Zipcode) is ALL, we need to retrieve all the records
irrespective of Pincode
if (pinCode.equalslgnoreCase("ALL™)) {
//Form the query
query = pm.newQuery(HealthReport.class, " healthlncident ==
paramHealthlncident && reportDateTime >= paramStartDate &&
reportDateTime < paramEndDate && status == paramStatus'™);

// declare parameters used above
query.declareParameters(*'String paramHealthlncident, java.util_Date
paramStartDate, java.util_Date paramEndDate, String paramStatus™);

}

else {
query = pm.newQuery(HealthReport.class, " healthlncident ==
paramHealthlncident && pinCode == paramPinCode && reportDateTime >=

paramStartDate && reportDateTime <paramEndDate && status ==
paramStatus'™);

// declare params used above

query.declareParameters(*'String paramHealthlncident, String
paramPinCode, java.util_Date paramStartDate, java.util_Date
paramEndDate, String paramStatus™);

}

//For each health incident (i.e. Cold Flu Cough), retrieve the
records

for (int i = 0; 1 < healthlncidents.length; i++) {
int healthlncidentCount = 0;
//Set the From and To Dates i1.e. 1st of the month and 1st day of
next month
Calendar _call = Calendar.getlnstance();
_call.set(CurrentYear, CurrentMonth, 1);
Calendar _cal2 = Calendar.getlnstance();
_cal2._set(CurrentYear,CurrentMonth+1,1);

Episode 16 : Using the Datastore API 216

List<HealthReport> codes = null;

if (pinCode.equalslgnoreCase(""ALL™)) {

//Execute the query by passing in actual data for the filters

codes = (List<HealthReport>)
query.executeWithArray(healthlncidents[i], call.getTime(), cal2.getTime
O."ACTIVE™);

else {

codes = (List<HealthReport>)
query.executeWithArray(healthlncidents[i], pinCode,
_call._getTime(),_cal2.getTime(), "ACTIVE'™);

}

//lterate through the results and increment the count

for (lterator iterator = codes.iterator(); iterator.hasNext();) {
HealthReport _report = (HealthReport) iterator.next();
healthlncidentCount++;

}

//Put the record in the Map data structure
_healthReport.put(healthlncidents[i], new
Integer(healthlncidentCount));

return _healthReport;

} catch (Exception ex) {
return null;

} finally {
pm.close();

}

b3

| have attempted to provide comments so that you can follow the code but I will list down
the important parts here:

1. We are going to deal with the following classes : PersistenceManager and Query
from the javax.jdo package.
2. We get the PersistenceManager instance via the PMF.java class that we wrote earlier.
3. We are using the Query class here to first build the query. For e.g.

query = pm.newQuery(HealthReport.class, ” healthIncident == paramHealthincident
&& reportDateTime >= paramStartDate && reportDateTime < paramEndDate && status
== paramStatus”);

What this means is that we are creating a query instance where we wish to get all records
for the HealthReport class. Additionally we are passing a criteria string. Notice that the
lefthand side are the fields of the HealthReport class (healthIncident, reportDateTime,
status) and the right hand side are parameters which will define and then pass the values
for to execute the query.

4. We define the parameters next as shown below:
I/ declare parameters used above
query.declareParameters(“String paramHealthIncident, java.util.Date

Episode 16 : Using the Datastore API 217

paramStartDate, java.util.Date paramEndDate, String paramStatus™);

5. Finally we use the query.executeWithArray(...) method which takes as parameter an

array that contains all the values for the above parameters that you have declared.

6. The executeWithArray(...) will return a List<> of HealthReport class instances that
you can then iterate through the populate your result. In our code, we simply compute the
total number for each of the health incidents (Flu, Cough, Cold).

Servlet Configuration

To complete our Servlet development, we will also need to add the <servlet/> and
<servlet-mapping/> entry to the web.xml file. This file is present in the WEB-INF
folder of the project. The necessary fragment to be added to your web.xml file are shown
below. Please note that you can use your own namespace and servlet class. Just modify it
accordingly if you do so.

<servlet>
<servlet-name>PostHealthlncidentServlet</servlet-name>
<servlet-
class>com.gaejexperiments.db.PostHealthIncidentServlet</servlet-class>
</servilet>
<servlet>
<servlet-name>ReportsServlet</servilet-name>
<servlet-class>com.gaejexperiments.db.ReportsServlet</servlet-class>
</servilet>
<servlet-mapping>
<servlet-name>PostHealthlncidentServlet</servlet-name>
<url-pattern>/posthealthincident</url-pattern>
</servlet-mapping>
<servlet-mapping>
<servlet-name>ReportsServilet</servlet-name>
<url-pattern>/reports</url-pattern>
</servlet-mapping>

Running the application locally

I am assuming that you have already created a new Google Web Application Project and
have created the above Servlets, web.xml , etc. So assuming that all is well, we will run
our application, by right-clicking on the project and selecting Run As —> Web
Application. Launch the browser on your local machine and try out the URLS that we
have covered so far like :

1. Adding a Health Report record :

http://localhost:8888/posthealthincident?healthincident=Flu&pincode=400101

2. Reports

http://localhost:8888/posthealthincident?healthincident=Flu&pincode=400101

Episode 16 : Using the Datastore API 218

http://localhost:8888/reports?type=HEALTHINCIDENTCOUNT CURRENT MONTH
&healthincident=Flu&pincode=ALL

http://localhost:8888/reports?type=HEALTHINCIDENTCOUNT CURRENT MONTH
&healthincident=ALL &pincode=ALL

Please replace the port 8888 with your local port number.

datastore_indexes.xml

If you run your application locally, you will notice that everything is working fine.
However, if you deploy this application the Google App Engine, you will not get any
results where you query the reports. Why is that? It is because there are no indexes
defined for your application.

If you visit your Developer Console at http://appengine.google.com and for your
particular application, you will find no indexes are defined for the Datastore indexes link
as shown below:

') Dyt Store Indexes - GAE) Expermanis - Mozills Firofos —|alx|
Film Edt View History Bockmarks Tools Help
G kot ™ '-?‘ :ﬂ‘ i wmlﬂ:}!:pmrgne poogle com'daisstore ndme: * §\ appengine googlecom | &y | & | "‘ Ao
Su Data Store Indexes - GAE.] Exp S-5 -8 - & & - |- &~
Google app engine ramin. k.irani@gmall.com | 14 Accour | Helg | Sign oul
pagepenments = Varslon: « Show Al Applcalinng

Main A You hove mot crested inde xes Tor this applicaton,

Dashboand Some types of queres requine an index to be buill. You can manage your mdeoes in an mdex yaml file. Leam more shout indewes
Suoia Detpdy

Logs

Crgn Jobs

Tash Qumyes

Daia
Datzstorn Indexes

What are these indexes ? Indexes are generated for every possible query that you fire in
your program. This is Google’s way of retrieving your data results efficiently. However
when you run in local mode, these indexes are generated for your automatically. If you
look in war/WEB-INF directory, you will find a directory named appengine-generated.
Inside this directory is a file that is constantly updated called datastore-indexes-

http://gaejexperiments.files.wordpress.com/2010/02/ep16-6.png
http://localhost:8888/reports?type=HEALTHINCIDENTCOUNT_CURRENT_MONTH&healthincident=Flu&pincode=ALL
http://localhost:8888/reports?type=HEALTHINCIDENTCOUNT_CURRENT_MONTH&healthincident=Flu&pincode=ALL
http://localhost:8888/reports?type=HEALTHINCIDENTCOUNT_CURRENT_MONTH&healthincident=ALL&pincode=ALL
http://localhost:8888/reports?type=HEALTHINCIDENTCOUNT_CURRENT_MONTH&healthincident=ALL&pincode=ALL
http://appengine.google.com/

Episode 16 : Using the Datastore API 219

auto.xml. The contents of this file for the reports that we have run so far is shown below:

<datastore-indexes>

<datastore-index kind=""HealthReport" ancestor="false"
source=""auto"">
<property name="healthlncident”™ direction="asc"/>
<property name="'status’" direction="asc"/>
<property name="‘reportDateTime"™ direction="asc"/>
</datastore-index>

<datastore-index kind=""HealthReport"™ ancestor="false"
source=""auto"">
<property name="healthlncident"™ direction="asc"/>
<property name="'pinCode' direction="asc"/>
<property name="'status’" direction="asc"/>
<property name="‘reportDateTime"™ direction="asc"/>
</datastore-index>

</datastore-indexes>

As you can see, there are two indexes generated for the searches that we fired and each of
them contains the parameters that we queried the Health Reports on.

To get your deployed application to function correctly, you will need to copy these
indexes to a file named datastore_indexes.xml.

You will need to place this file in the war/WEB-INF folder of your application project.
Now deploy your project again. On successful deploy, revist the Developer Console —>

Datastore indexes. You will find that the indexes have got created and are buing built as
shown below:

Episode 16 : Using the Datastore API 220

Duxley Store Indexes - GAE) Expormmenis

Fia Edé Viw Hisiory Bockmarks

W Za Data Swone Indexes - GAE. Exp_

Mornlln Fireiox
ied

{'appengine googhe tomidatestoreindems 2happ_d=gaejeperme 1] * il e '1" Beorge R
e s s s s 2 = i o A 1

S-B~B-dAw -0
Gﬂﬂﬂ'l’: app engine romin.kirani@gmallcom | by Accours | Helg | Sign out .
gpsixpaEnety x| Version: 1

= Thow AN Apgiicgliong
i [Below ame indexes for the appication. Indexes are managed in an index.yaml fle. Leamn mere about indexes
ain
Quoid Deradg HealthReport
Logs
Cron Jobs
Tagh Queyss

haakhincidant & . pinCode & status & . mponDiaaTme o Building

Jueesd:] Symnes) 0 Compested B Toisl 3
heakhincidant « | status & |, reporiDatsTime o

Building
Data Qa0 Byeneg D Compeied D Tolsl
Datastorn Indexes

Wait for a while. The building process goes through your current data and then on
completion, you will see the screen as shown below (A refresh needed!):

Durln Skore Indexes - GAE) Expormmaoenis
Fia Eck N Ml Backmarks

Mol Firofox
Belp __

'appengne googhe com'datestore/indems 2happ_d=gasjeperme 1] v il e '1" Chovgle
ot e e s R el L

D Bv B b B Or
Google app engine

romin k. irani@gmallcom | L Accous | Hely | Sign oul <
grajopenmets * | Varsion; 3

= Showy AR Aggilicalinng
i Below ame indexes for the appiication. Indexes are managed in an index_yaml fie Leam more aboud indexes

ain

Dushboard Ertity and Indoxes St

Quotd Deradg HealthReaport

haakhircidant « . pinCods & | status & mpoiDataTims o

i

heakhincidant & | status & |, reportDataTime
Tagh Queyes

. o o

http://gaejexperiments.files.wordpress.com/2010/02/ep16-7.png
http://gaejexperiments.files.wordpress.com/2010/02/ep16-8.png

Episode 16 : Using the Datastore API 221

Try out the queries now on your deployed application and they should work fine. You
can also manual create the datastore_indexes.xml file but the local development server
has this nice feature of auto generating out for you, so that you dont end up making
mistakes. But remember to upload the updated datastore_indexes.xml as part of your
deployment others the queries will silently fail.

Conclusion

We conclude this episode in which we covered how you can persist and query data using
the JDO API. | hope that it has given you enough inputs to start incorporating persistence
into your applications. It is by no means a simple exercise especially if you are coming in
from a SQL world. Not everything SQL-like can be converted as is to a NoSQL world so
refer to the several excellent sources available on the web in your persistence journey. |
highly recommend the official documentation along with the GAE Persistence Blog
mentioned at the beginning of the article.

	Introduction
	About the Author
	About Mumbai Health Tracker
	Acknowledgements
	Table of contents
	GoogleAppEngineJavaExperiments
	Episode 1 : Google App Engine Java Development Setup
	Sign up for Google App Engine
	Registering your Application
	Identity, Identity, Identity….
	YOUR_APPLICATION_ID.appspot.com
	Downloading, Installing and setting up the Eclipse IDE for GAEJ
	Writing our first GAEJ application
	Testing it locally
	Deploying it into the Cloud
	Testing the hosted/online version of our application
	Next Steps

	Episode 2 : GAEJ + XMPP and rolling your own Agent
	Agent in Action
	First things first
	Our “Hello World” XMPP Agent
	Create a New Project
	Understand the GAEJ XMPP API
	Receiving a message
	Interpreting the incoming message and composing a response
	Sending a message
	Write our Servlet and configure it
	Configure the XMPP Service for our Application
	Deploy the Application
	See it in Action
	Moving forward

	Episode 2 : Update : Communicating to another XMPP Account via your Bot
	Episode 3: Using the GAEJ Email Service
	Email Service in Action
	Develop our Project and utilize the Email Service
	Coding the GAEJEmailServlet.java
	Configuring the Servlet in web.xml file
	
	Deploy the Application and utilize it
	Moving forward

	Episode 4: Building a Dictionary App : Using the GAEJ URL Fetch Service
	Dictionary Application in Action
	 Behind the Scenes
	URL Fetch Service
	Developing our Application
	 The Front end HTML form [dictionary.html]
	Coding the GAEJDictionaryService Servlet [GAEJDictionaryService.java]
	Servlet Configuration
	Deploying and running your application
	Moving forward

	Episode 5: Upgrading to Google App Engine 1.2.6
	Post Installation Steps
	Upcoming Episode

	Episode 6: Handling incoming Email in your application
	Prerequisites
	Receiving Email Feature
	Configuring the incoming Email Service
	Configure and code a Java Servlet that will receive the incoming Message
	Deploying our application
	Testing our Application

	Episode 7: Writing your First Google Wave Robot
	What does this episode cover?
	Create a New Project
	Adding Google Wave Robot JAR files to your Project Path
	Writing the Google Wave Robot Servlet : MyFirstGoogleWaveRobot.java
	Configuring the Robot Servlet
	Creating the Robot capabilities.xml files
	Writing our Robot Profile Servlet (not required but nice)
	Configuring the Profile Servlet
	Deploying the Application
	GAEJ Robot in Action
	Going back in Time
	Parting notes

	Episode 8: Using Memcache in your GAEJ applications
	What is a Cache and why do we need one?
	Before we begin (Important!)
	Introducing a Cache
	The Memcache Service API
	GAEJDictionaryCache.java
	Modifying the Original GAEJDictionaryService.java class
	Try it out
	Cache Design considerations
	Moving on

	Episode 9: Using the Cron Service to run scheduled tasks
	What is a Cron Job? When would you need one?
	What does a Cron Job look like? And how do I schedule one?
	Develop a simple Cron Job
	GAEJCronServlet.java
	Configure the Cron Job
	Configuring the Servlet
	Specifying the Cron Job (cron.xml)

	
	Deploy the Application
	Monitoring the Cron Job
	Conclusion

	Episode 10: Using the Task Queue Service
	What does a Task constitute? What is a Queue ? Who executes it ?
	Task Queue in Action
	Implementing the above flow
	GAEJCreateTaskServlet.java
	GAEJSignupSubscriberServlet.java
	queue.xml
	Configuring the Servlets (web.xml)
	Task Execution in Action
	Moving on

	Episode 11: Develop Simple Google Wave Robots using the WadRobotFramework
	What is the WadRobotFramework?
	Create a New Project
	Adding Google Wave Robot JAR files and WadRobotFramework JAR file to your Project Path
	Writing the Simple Robot: MyAppenderRobot : MyAppenderRobot.java
	Configuring the MyAppenderRobot in web.xml
	Creating the MyAppenderRobot capabilities.xml files
	Writing our MyAppenderRobot Profile Servlet (not required but nice)
	Configuring the Profile Servlet
	Deploying the Application
	MyAppenderRobot in Action
	Writing another Simple Robot: MyBlipModifierRobot : MyBlipModifierRobot.java
	Configuring the MyBlipModifierRobot in web.xml
	Conclusion

	Episode 12 : Writing an Advanced Google Wave Robot using WadRobotFramework
	Writing an Advanced Google Wave Robot using WadRobotFramework
	{RobotIdentifier:Instruction<space>[parameters]}
	Project Setup
	Writing the Advanced Robot : MyAdvancedRobot.java
	{RobotIdentifier:Instruction<space>[parameters]}

	Implementing the Workers
	Worker1.java
	Worker2.java

	Configuring the MyAppenderRobot in web.xml
	ProfileServlet.java
	Creating the MyAdvancedRobot capabilities.xml files
	Deploying the Application
	MyAdvancedRobot in Action
	Conclusion

	Episode 13: Using the Blobstore Java API
	What is the Blobstore API?
	Prerequisites
	Tweet My Picture in Action
	Implementing Tweet My Picture
	Adding Twitter4J Jar to the Classpath and WEB-INF\lib folder
	index.jsp
	Upload Servlet
	submitpic.jsp
	Serve Servlet
	viewpic.jsp
	Configuring the Servlets
	Deploying the application
	Conclusion

	Episode 14: Writing a Chrome Extension powered by App Engine
	Google Chrome Extension
	Google Chrome Dev Channel version
	See it in Action
	Developing our Java Web Application : MyReminderApp
	Design discussion
	 Reminder.java
	ReminderService.java
	MyReminderAppServlet.java
	Configuring the Servlet

	Deploying the Application
	 Testing our Reminder Service
	Developing the Reminder Service Chrome Extension
	Installing the Reminder Chrome Extension
	Conclusion

	Episode 15: Using a CAPTCHA in your Google App Engine Application
	See it in Action
	 ReCAPTCHA Project
	1. Get your private/public keys for the site name hat your application will be running on.
	2. Download the JAR file that we shall be using at the Server side to verify the CAPTCHA challenge and response.
	Developing our Application
	Add the recaptcha4j-0.0.7.jar file to your Project classpath

	 The Front end HTML form [captcha.html]
	The Servlet [PostFormDataServlet.java]
	Servlet Configuration
	Running the application locally
	Conclusion

	Episode 16 : Using the Datastore API
	What we shall build
	 Developing our Application
	Few things to note first:
	 PMF.java
	HealthReport.java
	PostHealthIncidentServlet.java
	 DBUtils.java
	ReportsServlet.java
	Analyzing the DBUtils.getHealthIncidentCountForCurrentMonth method

	Servlet Configuration
	Running the application locally
	datastore_indexes.xml
	Conclusion

